Elastic-plastic behavior of symmetric metal-matrix composite laminates is analyzed for the case of in-plane mechanical loading. The overall response of the laminate at each instant is derived from the elastic-plastic deformation of the individual fibrous layers, and from their mutual constraints. Constitutive equations of the laminated plates are presented in terms of initial yield conditions, hardening rules, and instantaneous compliances. Local stresses, hardening parameters, and strains are found in each lamina and in the fiber and matrix phases within each lamina. Specific results are obtained with the continuum model of elastic-plastic fibrous composites [1] which has been recently developed by the authors. Comparisons of analytical results with experimental measurements are made for certain laminated plates.

This content is only available via PDF.
You do not currently have access to this content.