The dynamic fracture response of a long beam of brittle material subjected to pure bending is studied. If the magnitude of the applied bending moment is increased quasi-statically to a critical value, a crack will propagate from the tensile side of the beam. As an extension of previous work, the effect of shear and of rotary inertia on the moment and induced axial load at the fracturing section is included in the present analysis. Thus an improved formulation is presented by means of which the crack length, crack-tip velocity, bending moment, and axial force at the fracture section are determined as functions of time after crack initiation. It is found that the rotary effect diminishes the axial force effect and retards total fracture time whereas the shear has an opposite effect. Thus by combining the two effects (to simulate to first order the Timoshenko beam) overall fracture is retarded and better agreement with experimental data is achieved. The results also apply for plane-strain fracture of a plate in pure bending provided the value of the elastic modulus is appropriately modified.

This content is only available via PDF.
You do not currently have access to this content.