A general method of solution, based on a complex finite Fourier transform, is adopted for the stability and vibration analysis of compressed, aeolotropic, composite cylindrical shells. A major feature of the solution method is its ability to handle both uniform and nonuniform conditions that hold at the boundaries of finite-length cylindrical shells. For the various shells investigated, an optimum winding angle was found for which a maximum frequency response and highest critical buckling load is attainable. Similar optimization was also discovered to be possible by controlling both/either shell heterogeneity and/or fiber orientation.
Issue Section:
Research Papers
This content is only available via PDF.
Copyright © 1982
by ASME
You do not currently have access to this content.