When structures are excited by random force excitation the circle fits of the data around resonance are usually poor. The structural parameter estimates, which result from this fit, are usually erroneous. No matter how elegant the circle or the multimodal fit, the results will be poor if the frequency response function (FRF) is a poor representation of the actual structural response. In general for the random excitation case, this is the case. The conventional fast Fourier transform (FFT) method which is used to estimate the frequency response function, is given by H1 (f) = Gxy/Gxx. This produces poor results when the coherence of the data falls in the resonance region. A drop in the coherence usually indicates noise at the input of the structure for this case. H1 (f) is quite sensitive to such noise giving erroneous estimates. This paper investigates an alternative method for computing the frequency response function, H2 (f) = Gyy/Gyx, and its impact on the accuracy of the circle fit procedure used in modal analysis. This new estimator is not sensitive to input noise like the currently used H1 (f). H2(f) provides the best estimate at or around resonance even in the presence of noise on the input signal. If one defines the average percentage fit error in the circle fit operation as 100 times the average radial deviation of the data points from the radius of the statistically fit circle divided by the fit circle radius, one can compute the circle fit accuracy for each of the proposed methods of data treatment. Typically, the percentage fitting error for H1 (f) might be 10 percent while the fitting error for H2 (f) using exactly the same data will be 0.5 percent. Thus, the proposed method eliminates long-standing system analysis errors through the use of a simple revision of the way the data are treated in the FFT processor around the resonance regions.

This content is only available via PDF.
You do not currently have access to this content.