Time-harmonic elastodynamic analysis is presented for a periodic array of collinear mode III cracks in an infinite transversely isotropic solid. The scattering problem by a single antiplane crack is first formulated, and the scattered displacement field is expressed as Fourier integrals containing the crack opening displacement. By using this representation formula and by considering the periodicity conditions in the crack spacing, a boundary integral equation is obtained for the crack opening displacement of a reference crack. The boundary integral equation is solved numerically by expanding the crack opening displacement into a series of Chebyshev polynomials. Numerical results are given to show the effects of the crack spacing, the wave frequency, the angle of incidence, and the anisotropy parameter on the elastodynamic stress intensity factors.

This content is only available via PDF.
You do not currently have access to this content.