The long and short-wave asymptotics of order O(η6),η=kh, for free extensional vibrations of an infinite isotropic elastic plate are studied. The asymptotic model for flexural and extensional wave motion applicable for both long and short-wave approximations and for any materials is developed. The velocity and frequency dispersion relations for extensional waves are derived in analytical form from the system of three-dimensional dynamic equations of linear elasticity. All dispersion equations and the group velocity formula are presented as explicit functions in material parameter γ=cs2/cL2 (the ratio of the velocities squared of the flexural and extensional waves) without any correction factors as in the Reissner-Mindlin theory. Variations of the velocity and frequency spectra depending on Poisson’s ratio ν are illustrated graphically. The results are discussed and compared to those obtained and summarized by Mindlin (1960), Mindlin and Medick (1959), Tolstoy and Usdin (1953, 1957), Achenbach (1973), and Graff (1991).

1.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
2.
Bache
 
T. C.
, and
Hegemier
 
G. A.
,
1974
, “
On Higher-Order Elastodynamic Plate Theories
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
41
, pp.
423
428
.
3.
Bedford, A., and Drumheller, D. S., 1994, Introduction to Elastic Wave Propagation, John Wiley and Sons, New York.
4.
Bland, D. R., 1988, Wave Theory and Applications, Oxford University Press, New York.
5.
Berdichevskii
 
V. L.
,
1973
, “
Dynamic Theory of Thin Elastic Plates
,”
Izvestia AN SSSR, Mechanics of Solids
, Vol.
8
, No.
6
, pp.
99
109
.
6.
Brekhovskikh, L. M., and Goncharov, V., 1994, Mechanics of Continua and Wave Dynamics, Springer-Verlag, New York.
7.
Davis, J. L., 1988, Wave Propagation in Solids and Fluids, Springer-Verlag, New York.
8.
Doyle, J. F., 1989, Wave Propagation in Structures, Springer-Verlag, New York.
9.
Eringen, A. C., and S¸uhubi, E. S., 1975, Elastodynamics, Vol. 2, Academic Press, New York.
10.
Ewing, W. M., Jardetzky, W. S., and Press, F., 1957, Elastic Waves in Layered Media, McGraw-Hill, New York.
11.
Goldenveizer
 
A. L.
,
Kaplunov
 
J. D.
, and
Nolde
 
E. V.
,
1993
, “
On Timo-shenko-Reissner Type Theories of Plates and Shells
,”
International Journal of Solids and Structures
, Vol.
30
, No.
5
, pp.
675
694
.
12.
Graff, K. F., 1991, Wave Motion in Elastic Solids, Dover, New York.
13.
Losin
 
N. A.
,
1997
, “
Asymptotics of Flexural Waves in Isotropic Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
64
, pp.
336
342
.
14.
Losin
 
N. A.
, and
Protsenko
 
A. M.
,
1984
, “
Spectrum of Normal Waves in a Cylindrical Shell
,”
Izvestia AN SSSR, Mechanics of Solids
, Vol.
19
, No.
3
, pp.
186
189
.
15.
Miklowitz, J., 1966, “Elastic Wave Propagation,” Applied Mechanics Surveys, H. N. Abramson et al., eds., Spartan Books, Washington, pp. 809–839.
16.
Miklowitz, J., 1978, The Theory of Elastic Waves and Waveguides, North-Holland, Amsterdam.
17.
Mindlin, R. D., 1960, “Waves and Vibrations in Isotropic, Elastic Plates,” Structural Mechanics, J. N. Goodier, and N. J. Hoff, eds., Pergamon Press, New York, pp. 199–232.
18.
Mindlin
 
R. D.
, and
Medick
 
M. A.
,
1959
, “
Extensional Vibrations of Elastic Plates
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
26
, pp.
561
569
.
19.
Protsenko
 
A. M.
,
1980
, “
Asymptotics of Wave Problems for a Cylindrical Shell
,”
Izvestia AN SSSR, Applied Mathematics and Mechanics
, Vol.
44
, No.
3
, pp.
507
515
.
20.
Redwood, M., 1960, Mechanical Waveguides, Pergamon Press, New York.
21.
Reissner
 
E.
,
1985
, “
Reflections on the Theory of Elastic Plates
,”
ASME Applied Mechanics Reviews
, Vol.
38
, pp.
1453
1464
.
22.
Tolstoy
 
I.
, and
Usdin
 
E.
,
1953
, “
Dispersive Properties of Stratified Elastic and Liquid Media: A Ray Theory
,”
Geophysics
, Vol.
18
, pp.
844
870
.
23.
Tolstoy
 
I.
, and
Usdin
 
E.
,
1957
, “
Wave Propagation in Elastic Plates: Low and High Mode Dispersion
,”
Journal of the Acoustical Society of America (J.A.S.A.)
, Vol.
29
, No.
1
, pp.
37
42
.
This content is only available via PDF.
You do not currently have access to this content.