The step-by-step analysis of structures constituted by elastic-plastic finite elements, subjected to an assigned loading history, is here considered. The structure may possess dynamic and/or not dynamic degrees-of-freedom. As it is well-known, at each step of analysis the solution of a linear complementarity problem is required. An iterative method devoted to solving the relevant linear complementarity problem is presented. It is based on the recursive solution of a linear complementarity, problem in which the constraint matrix is block-diagonal and deduced from the matrix of the original linear complementarity problem. The convergence of the procedure is also proved. Some particular cases are examined. Several numerical applications conclude the paper.

1.
Borino, G., Caddemi, S., and Polizzotto, C., 1987, “Mathematical programming methods for evaluating dynamic deformations of elastoplastic structures,” Computational Plasticity, Part II, D. R. J. Owen, E. Hinton, E. On˜ate, eds., Pineridge Press, Swansea, UK, pp. 1231–1245.
2.
Borino, G., and Polizzotto, C., 1989, “A finite element elastic-plastic dynamic analysis by mathematical programming,” Proc. FEMSA, Feb., 8–10, Stellen-boschy, South Africa.
3.
Capurso
M.
, and
Maier
G.
,
1970
, “
Incremental elastoplastic analysis and quadratic optimization
,”
Meccanica
, Vol.
5
, pp.
107
116
.
4.
Corradi
L.
,
1978
, “
On compatible finite element models for elastic plastic analysis
,”
Meccanica
, Vol.
13
, pp.
133
150
.
5.
Corradi
L.
,
1983
, “
A displacement formulation for the finite element elastic-plastic problem
,”
Meccanica
, Vol.
18
, pp.
77
91
.
6.
Cottle, R. W., 1979, “Fundamentals of quadratic programming and linear complementarity,” Engineering Plasticity by Mathematical Programming, M. Z. Cohn and G. Maier, eds., Pergamon Press, New York, pp. 293–323.
7.
Cottle, R. W., and Dantzig, G. B., 1968, “Complementarity pivot theory of mathematical programming,” Mathematics of Decision Sciences, Part I, G. B. Dantzig and A. F. Veinott, eds., American Mathematical Society, Providence, RI, pp. 115–132.
8.
Cottle, R. W., Spang, J. S., and Stone, R. E., 1992, The Linear Complementarity Problem, Academic Press, San Diego, CA.
9.
De Donato, O., and Franchi, A., 1979, “Elastic plastic analysis by finite elements,” Engineering Plasticity by Mathematical Programming, M. Z. Cohn and G. Maier, eds., Pergamon Press, New York, pp. 413–435.
10.
De Donato
O.
, and
Maier
G.
,
1976
, “
Historical deformations analysis of elasto-plastic structures as a parametric linear complementarity
,”
Meccanica
, Vol.
11
, pp.
166
171
.
11.
Dvorkin
E. N.
,
1996
, “
Finite strain elasto-plastic formulation using the method of mixed interpolation of tensorial components
,”
Computational Mechanics
, Vol.
18
, pp.
290
301
.
12.
Feijoo, R. A., and Zouain, N., 1987, “Variational formulations rates and increments in plasticity,” Computational Plasticity, Part II, D. R. J. Owen, E. Hinton, and E. On˜ate, eds., Pineridge Press, Swansea, UK, pp. 33–57.
13.
Giambanco, F., 1998, “Elastic plastic analysis by the asymptotic pivoting method,” Computers & Structures, in press.
14.
Giambanco
F.
,
Lo Bianco
M.
, and
Palizzolo
L.
,
1994
, “
An Approximate Technique for Dynamic Elastic-Plastic Analysis
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
61
, pp.
907
913
.
15.
Giambanco
F.
,
Palizzolo
L.
, and
Cirone
L.
,
1998
, “
Elastic plastic analysis iterative solution
,”
Computational Mechanics
, Vol.
21
, pp.
149
160
.
16.
Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., 1984, “QPSOL: A fortran package for quadratic programming,” Technical Report SOL 84–6, Department of Operations Research, Stanford, CA.
17.
Kojic
M.
,
1997
, “
The governing parameter method for implicit integration of viscoplastic constitutive relations for isotropic and orthotropic metals
,”
Computational Mechanics
, Vol.
19
, pp.
49
57
.
18.
Lemke, C. E., 1968, “On complementarity pivot theory,” Mathematics of Decision Sciences, Part I, G. B. Dantzig and A. F. Veinott, eds., American Mathematical Society, Providence, RI, pp. 95–114.
19.
Lemke, C. E., 1980, “A survey of complementarity theory,” Variational Inequalities and Complementarity Problems, R. W. Cottle, F. Giannessi, and J. L. Lions, eds., Wiley and Sons, Chichester, UK, pp. 213–239.
20.
Maier
G.
,
1968
a, “
A quadratic programming approach for certain classes of nonlinear structural problems
,”
Meccanica
, Vol.
3
, pp.
121
130
.
21.
Maier
G.
,
1968
b, “
Quadratic programming theory of elastic perfectly plastic structures
,”
Meccanica
, Vol.
3
, pp.
31
39
.
22.
Maier, G., 1978, “Mathematical programming methods in structural analysis,” Proc. Int. Conf. on Variational Methods in Engineering, Vol. II, Southampton University Press, Southampton, UK.
23.
Martin, J. B., 1975, Plasticity: Fundamentals and General Results, The MIT Press, Cambridge, MA.
24.
Martin, J. B., 1985, “Bounding principles and discrete time integration for statically loaded elastic plastic bodies,” Simplified Analysis of Inelastic Structures Subjected to Statical or Dynamical Loadings, J. Zarka, ed., Laboratoire de Me´canique des Solides, Ecole Polytechnique, Palaiseau, France.
25.
Muscolino
G.
,
1989
, “
Mode-superposition methods for elastoplastic systems
,”
Jour. Eng. Mech. Div., ASCE
, Vol.
115
, No.
10
, pp.
2199
2215
.
26.
Owen, D. R. J., 1980, “Implicity finite element methods for dynamic transient analysis of solids with particular reference to nonlinear situations,” Advanced Structural Analysis, J. Donea, ed., Applied Science Publications, London, pp. 123–152.
27.
Owen, D. R. J., and Hilton, E., 1980, Finite Elements in Plasticity, Pineridge Press, Swansea, UK.
28.
Polizzotto
C.
,
1986
, “
Elastoplastic analysis method for dynamic agencies
,”
J. Eng. Mech. Div., ASCE
, Vol.
112
, pp.
293
310
.
29.
Pyo
C. R.
,
Okada
H.
, and
Atluri
S. N.
,
1995
, “
An elastic-plastic finite element alternating method for analyzing wide-spread fatigue damage in aircraft structures
,”
Computational Mechanics
, Vol.
16
, pp.
62
68
.
30.
Wang
L.
,
Brust
F. W.
, and
Atluri
S. N.
,
1997
, “
The elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture under WFD conditions in aircraft structures, Part I
,”
Computational Mechanics
, Vol.
19
, pp.
356
369
.
31.
Wilson
E. L.
,
Farhoomand
I.
, and
Bathe
K. J.
,
1973
, “
Nonlinear dynamic analysis of complex structures
,”
Earth. Eng. and Struct. Dyn.
, Vol.
1
, pp.
241
252
.
32.
Zarka, J., and Casier, J., 1981, “Elastic plastic response of a structure to cyclic loading: Practical rules,” Mechanics Today, Vol. 6, S. Nemat-Nasser, ed., Pergamon Press, New York, pp.93–198.
This content is only available via PDF.
You do not currently have access to this content.