The characterization of a chaotic attractor in a driven, Duffing-Holmes oscillator with power-law damping is considered. State space reconstruction of the time series of the attractor is carried out to investigate its structure. The invariants associated with the attractor such as correlation dimension and entropy are computed. Also the maximum-likelihood (ML) estimation of dimension and entropy are carried out. The use of obtained invariants in building models for prediction and control using power-law dampers is discussed.

1.
Abarbanel
H. D. I.
, et al.,
1994
, “
Predicting Physical Variables in Time-Delay Embedding
,”
Physical Review E
, Vol.
49
, pp.
1840
1853
.
2.
Abhyankar
N. S.
,
Hall
E. K.
, and
Hanagud
S. V.
,
1993
, “
Chaotic Vibrations of Beams: Numerical Solution of Partial Differential Equations
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
167
172
.
3.
Badii
R.
, et al.,
1988
, “
Dimension Increase in Filtered Chaotic Signals
,”
Physical Review Letters
, Vol.
60
, pp.
979
982
.
4.
Braun, S. G., 1986, Mechanical Signature Analysis, Academic Press, London.
5.
Casdagli, M., and Eubank, S., 1991, Nonlinear Prediction and Modelling, Addison-Wesley, Reading, MA.
6.
Chennaoui
A.
, et al.,
1990
, “
Attractor Reconstruction From Filtered Chaotic Time Series
,”
Physical Review A
, Vol.
41
, pp.
4151
4159
.
7.
Eckmann
J.-P.
, and
Ruelle
D.
,
1985
, “
Ergodic Theory of Chaos and Strange Attractors
,”
Reviews of Modern Physics
, Vol.
57
, pp.
617
656
.
8.
Farmer, J. D., and Sidorowich, J. J., 1987, Physical Review Letters, Vol. 59, pp. 845–848.
9.
Fraser
A. M.
,
1989
, “
Information and Entropy in Strange Attractors
,”
IEEE transactions on Information theory
, Vol.
35
, pp.
245
262
.
10.
Gersch
W.
, and
Liu
R. S. Z.
,
1976
, “
Time Series Methods for the Synthesis of Random Vibration Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
43
, pp.
159
165
.
11.
Gershenfeld, N. A., and Weigend, A. S., 1993, “The Future of Time Series,” Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1–70.
12.
Holmes
P. J.
, and
Moon
F. C.
,
1983
, “
Strange Attractors and Chaos in Nonlinear Mechanics
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
50
, pp.
1021
1032
.
13.
Kumar, A., and Mullick, S. K., 1995, “A Dynamical Systems Approach to Nonlinear Time Series Analysis for Modelling and Prediction,” preprint.
14.
Masri
S. F.
,
Miller
R. K.
,
Saud
A. F.
, and
Caughey
T. K.
,
1987
, “
Identification of Nonlinear Vibrating Structures: Part I—Formulation
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
918
922
.
15.
Moon, F. C., 1987, Chaotic Vibrations, John Wiley and Sons, New York.
16.
Moon
Y.
, et al.,
1995
, “
Estimation of Mutual Information Using Kernel Density Estimators
,”
Physical Review E
, Vol.
52
, pp.
2318
2321
.
17.
Ravindra
B.
, and
Mallik
A. K.
,
1994
, “
Role of Nonlinear Dissipation in Soft Duffing Oscillators
,”
Physical Review E
, Vol.
49
, pp.
4950
4954
.
18.
Ravindra, B., and Cartmell, M., 1996, “Dynamical Systems Approach to Identification of Vibrating Systems,” International Conference on Identification in Engineering Systems, M. I. Friswell, ed., Swansea, UK, pp. 570–583.
19.
Ruelle, D., 1978, Thermodynamic Formalism, Addison-Wesley, Reading, MA.
20.
Sauer
T., et al.
,
1991
, “
Embedology
,”
Journal of Statistical Physics
, Vol.
65
, pp.
579
616
.
21.
Schouten
J. C.
, et al.,
1994
a, “
Estimation of the Dimension of a Noisy Attractor
,”
Physical Review E
, Vol.
50
, pp.
1851
1861
.
22.
Schouten
J. C.
, et al.,
1994
b, “
Maximum-Likelihood Estimation of the Entropy of an Attractor
,”
Physical Review E
, Vol.
49
, pp.
126
129
.
23.
Takens, F., 1981, “Detecting Strange Attractors in Turbulence,” Lecture Notes in Mathematics, Vol. 898, Springer-Verlag, New York, pp. 366–381.
24.
Tong, H., 1990, Nonlinear Time Series: A Dynamical Systems Approach, Oxford University Press, Oxford, UK.
25.
Wang
Z.
, and
Fang
T.
,
1986
, “
A Time Domain Method for Identifying Modal Parameters
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
53
, pp.
28
32
.
This content is only available via PDF.
You do not currently have access to this content.