This paper develops active controllers for the out-of-plane vibration of a flexible cable using boundary actuators and sensors. An exact model knowledge controller exponentially stabilizes the cable displacement assuming known system parameters. An adaptive controller asymptotically stabilizes the cable displacement while compensating for parametric uncertainty in the actuator mass and cable tension. The performance of the controllers is experimentally demonstrated.

1.
Baicu
C. F.
,
Rahn
C. D.
, and
Nibali
B. D.
,
1996
a, “
Active Boundary Control of Elastic Cables: Theory and Experiment
,”
Journal of Sound and Vibration
, Vol.
198
, No.
1
, pp.
17
26
.
2.
Baicu, C. F., Rahn, C. D., and Dawson, D., 1996b, “Boundary Control of a Flexible Link Electrically Driven Gantry Robot,” Active Control of Vibration and Noise, ASME; New York, pp. 109–115.
3.
Canbolat, H., Dawson, D., and Rahn, C., 1997, “Boundary Control of a Cantilevered Flexible Beam with Point-Mass Dynamics at the Free End,” Proc. of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and the AIAA/ASME/AHS Adaptive Structures Forum, Part 2, Kissimmee, FL, Apr., pp. 1589–1598.
4.
Chen
G.
,
Delfour
M.
,
Krall
A.
, and
Payre
G.
,
1987
, “
Modeling, Stabilization, and Control of Serially Connected Beams
,”
SIAM Journal of Control and Optimization
, Vol.
25
, No.
3
, pp.
526
546
.
5.
Fried
I.
,
1982
, “
Large Deformation Static and Dynamic Finite Element Analysis of Extensible Cables
,”
Computers and Structures
, Vol.
15
, pp.
315
319
.
6.
Fujino
Y.
,
Warnitchai
P.
, and
Pacheco
B.
,
1993
, “
Active Stiffness Control of Cable Vibration
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
948
953
.
7.
Fujino
Y.
, and
Susumpow
T.
,
1995
, “
Active Control of Multimodal Cable Vibrations by Axial Support Motion
,”
Smart Materials and Structures
, Vol.
4
, pp.
A41–A51
A41–A51
.
8.
Hardy, G., Littlewood, J., and Polya, G., 1959, Inequalities, Cambridge University Press, Cambridge, UK.
9.
Irvine, H., 1981, Cable Structures, MIT Press, Cambridge, MA.
10.
Kokotovic
P.
,
1992
, “
The Joy of Feedback: Nonlinear and Adaptive
,”
IEEE Control Systems Magazine
, Vol.
12
, June, pp.
7
17
.
11.
Luo
Z.
,
Kitamura
N.
, and
Guo
B.
,
1995
, “
Shear Force Feedback Control of Flexible Robot Arms
,”
IEEE Transactions on Robotics and Automation
, Vol.
11
, No.
5
, pp.
760
765
.
12.
Morgu¨l
O¨.
,
1991
, “
Orientation and Stabilization of a Flexible Beam Attached to a Rigid Body: Planar Motion
,”
IEEE Transactions on Automatic Control
, Vol.
36
, No.
8
, pp.
953
962
.
13.
Morgu¨l
O¨.
,
Rao
B.
, and
Conrad
F.
,
1994
, “
On the Stabilization of a Cable with a Tip Mass
,”
IEEE Transactions on Automatic Control
, Vol.
39
, No.
10
, pp.
2140
2145
.
14.
Perkins
N.
, and
Mote
C.
,
1987
, “
Three-dimensional Vibration of Travelling Elastic Cables
,”
Journal of Sound and Vibration
, Vol.
114
, No.
2
, pp.
325
340
.
15.
Rahn, C., and Mote, C., 1993, “Axial Force Stabilization of Transverse Beam Vibration,” Vibration and Control of Mechanical Systems, ASME, New York, pp. 29–34.
16.
Shahruz, S. M., and Krishna, L. G., 1996, “Boundary Control of Nonlinear String,” Proc. of the ASME Dynamics Systems and Control Division, ASME, New York, pp. 831–835.
17.
Slotine, J., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
18.
Soler
A.
,
1970
, “
Dynamic Response of Single Cable with Initial Sag
,”
Journal of the Franklin Institute
, Vol.
190
, pp.
377
387
.
19.
West
H.
,
Geschwinder
L.
, and
Suchoski
J.
,
1975
, “
Natural Vibrations of Suspension Cables
,”
Journal of the Structural Division, ASCE
, Vol.
101
, pp.
2277
2291
.
This content is only available via PDF.
You do not currently have access to this content.