In this paper we investigate a class of combined discrete-continuous mechanical systems consisting of a continuous elastic structure and a finite number of concentrated masses, elastic supports, and linear oscillators of arbitrary dimension. After the motion equations for such combined systems are derived, they are formulated as an abstract evolution equation on an appropriately defined Hilbert space. Our main objective is to ascertain conditions under which the combined systems have classical normal modes. Using the sesquilinear form approach, we show that unless some matching conditions are satisfied, the combined systems cannot have normal modes even if Kelvin-Voigt damping is considered.

1.
Banks
H. T.
,
Gates
S. S.
,
Rosen
I. G.
, and
Wang
Y.
,
1988
, “
The identification of a distributed parameter model for a flexible structure
,”
SIAM J. Control and Optimization
, Vol.
26
, pp.
743
762
.
2.
Banks, H. T., Smith, R. C., and Wang, Y., 1996, Smart Material Structures: Modeling, Estimation and Control, Masson/Wiley; Paris/Chichester.
3.
Bellos, J., 1989, “Theoretical and Experimental Analysis of Non-Proportional Damping,” Ph.D. dissertation, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York.
4.
Bellos
J.
, and
Inman
D. J.
,
1989
, “
A survey on non proportional damping
,”
Shock and Vibration Digest
, Vol.
27
, No.
10
, pp.
7
12
.
5.
Bergman
L. A.
, and
McFarland
D. M.
,
1988
, “
On the Vibration of a Point Supported Linear Distributed System
,”
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol.
110
, pp.
485
492
.
6.
Bergman, L. A., and McFarland, D. M., 1988, “Vibration of a class of complex discrete-distributed systems,” Proc. of the 29th AIAA Structures, Structural Dynamics and Materials Conference, pp. 890–900.
7.
Bergman
L. A.
, and
Nicholson
J. W.
,
1985
, “
Forced Vibration of Damped Combined Linear System
,”
ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol.
107
, pp.
275
281
.
8.
Bergman, L. A., and Nicholson, J. W., 1985, “On the free and forced torsional vibration of multi-disk shaft systems,” Proc. of the 26th AIAA Structures, Structural Dynamics and Materials Conference, pp. 515–521.
9.
Bishop, R. E. D., and Johnson, D. C., 1960, The Mechanics of Vibration, Cambridge University Press, Cambridge, UK.
10.
Caughey
T. K.
,
1960
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
27
, pp.
269
271
.
11.
Caughey
T. K.
, and
O’Kelley
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
32
, pp.
583
588
.
12.
Chen
Y.
,
1963
, “
On beams with many elastic supports
,”
Journal of the Franklin Institute
, Vol.
276
, No.
4
, pp.
273
281
.
13.
Chen
Y.
,
1963
, “
On the Vibration of Beams or Rods Carrying a Concentrated Mass
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
30
, pp.
310
311
.
14.
Davies
H. G.
, and
Rogers
R. J.
,
1979
, “
The vibration of structures elastically restrained at discrete points
,”
Journal of Sound and Vibration
, Vol.
63
, No.
3
, pp.
437
447
.
15.
Dowell
E. H.
,
1979
, “
On Some General Properties of Combined Dynamical Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
46
, pp.
206
209
.
16.
Ewins, D. J., 1984, Modal Testing Theory and Practice, Research Studies Press, Letchworth, UK.
17.
Gupta
G. S.
,
1970
, “
Natural flexural waves and the normal modes of periodically supported beams and plates
,”
Journal of Sound and Vibration
, Vol.
13
, No.
1
, pp.
89
101
.
18.
Huang
J. H.
, and
Ma
F.
,
1994
, “
On the Approximate Solution of Nonclassically Damped Linear Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
60
, pp.
695
701
.
19.
Inman, D. J., 1989, Vibration: With Control Measurement and Stability, Prentice-Hall, Englewood Cliffs, NJ.
20.
Inman
D. J.
, and
Olsen
C. L.
,
1988
, “
Dynamics of Symmetrizable Nonconservative Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
55
, pp.
206
212
.
21.
Jacquot
R. G.
,
1970
, “
Vibrations of elastic surface systems carrying dynamic elements
,”
Journal of the Acoustical Society of America
, Vol.
47
, No.
5
, Part 2, pp.
1354
1358
.
22.
Kasprzyk
S.
,
1984
, “
An analysis of vibrations of a discrete-continuous system of the type (∞, 2)
,”
Nonlinear Vibration Problems
, Vol.
22
, pp.
199
214
.
23.
Lin
Y. K.
,
1962
, “
Free vibrations of a continuous beam on elastic supports
,”
Int. Journal of the Mechanical Sciences
, Vol.
4
, pp.
400
423
.
24.
McFarland, D. M., 1990, “Analysis of Passive and Active Discrete-Distributed Linear Dynamical Systems Using Green’s Function Methods,” Ph.D. Dissertation, Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, IL.
25.
Ma
F.
, and
Caughey
T. K.
,
1995
, “
Analysis of Linear Nonconservative Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
62
, pp.
685
691
.
26.
Mead
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
ASME Journal of Engineering for Industry
, Vol.
93
, pp.
783
792
.
27.
Meirovitch, L., 1967, Analytical Methods in Vibrations, Macmillan, New York.
28.
Miles, J. W., 1956, “Vibrations of beams on many supports,” ASCE Journal of the Engineering Mechanics Division, pp. 1–9.
29.
Nicholson
J. W.
, and
Bergman
L. A.
,
1986
, “
Free Vibration of combined dynamical systems
,”
ASCE Journal of Engineering Mechanics
, Vol.
112
, No.
1
, pp.
1
13
.
30.
Nicholson
J. W.
, and
Bergman
L. A.
,
1986
, “
Vibration of damped plate-oscillator systems
,”
ASCE Journal of Engineering Mechanics
, Vol.
112
, No.
1
, pp.
14
30
.
31.
Nicholson
J. W.
, and
Bergman
L. A.
,
1985
, “
Vibration of thick plates carrying concentrated masses
,”
Journal of Sound and Vibration
, Vol.
103
, No.
3
, pp.
357
369
.
32.
Pan
H. H.
,
1965
, “
Transverse Vibration of an Euler Beam Carrying a System of Heavy Bodies
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
32
, pp.
434
437
.
33.
Wloka, J., 1992, Partial Differential Equations, Cambridge University Press, Cambridge, UK.
This content is only available via PDF.
You do not currently have access to this content.