A case is made for the consideration of single-point machining of ductile metals as a special type of wedge indentation process. A general-purpose finite element analysis of machining using iterative rezoning is developed based on this analogy. The accuracy of this analysis, which does not incorporate any separation criterion, is limited only by our knowledge of the material properties and the friction conditions at the tool-chip interface. Strain hardening, strain rate effects, and the temperature dependence of the properties of the work material can be taken into consideration. While Coulomb friction is assumed at the chip-tool interface in the present model, it can easily be reformulated to include more complicated frictional interactions such as adhesion. An analysis of the cutting/indentation of an isotropic work-hardening material at slow speeds under two different friction conditions is presented. It is shown that many of the important features of machining processes are consistently reproduced by the analysis. [S0021-8936(00)03501-7]

1.
Klamecki, B. E., 1973, “Incipient Chip Formation in Metal Cutting—A Three Dimension Finite Element Analysis,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
2.
Usui, E., and Shirakashi, T., 1982, “Mechanics of Machining—From Description to Predictive Theory,” On the Art of Cutting Metals—75 Years Later, ASME, New York, pp. 13–35.
3.
Strenkowski
,
J. S.
and
Carroll
,
J. T.
,
1985
, “
A Finite Element Model of Orthogonal Metal Cutting
,”
J. Eng. Ind.
,
109
, pp.
349
353
.
4.
Carroll
,
J. T.
and
Strenkowski
,
J. S.
,
1988
, “
Finite Element Models of Orthogonal Cutting With Application to Single Point Diamond Turning
,”
Int. J. Mech. Sci.
,
30
, No.
2
, pp.
899
920
.
5.
Shih, J. M., Chandrasekar, S., and Yang, T. Y., 1990, “Finite Element Simulation of Metal Cutting Process With Strain Rate and Temperature Effects,” Proc. ASME Symposium on Fundamental Issues in Machining, ASME, New York, p. 11.
6.
Komvopoulos
,
K.
and
Erpenbeck
,
S. A.
,
1991
, “
Finite Element Modeling of Orthogonal Metal Cutting
,”
J. Eng. Ind.
,
113
, pp.
253
267
.
7.
Lin
,
Z.-C.
,
Chu
,
K.-T.
, and
Pan
,
W.-C.
,
1994
, “
Study of the Stress, Strain, and Temperature Distributions of a Machined Workpiece Using a Thermo-Elastic-Plastic Coupled Model
,”
J. Mater. Process. Technol.
,
41
, No.
3
, pp.
291
310
.
8.
Zhang
,
B.
and
Bagchi
,
A.
,
1994
, “
Finite Element Simulation of Chip Formation and Comparison With Machining Experiment
,”
J. Eng. Ind.
,
116
, No.
3
, pp.
289
297
.
9.
Ernst, H., 1938, “Physics of Metal Cutting,” Machining of Metals, Amer. Soc. for Metals, pp. 1–34.
10.
Finnie
,
I.
,
1956
, “
Review of the Metal-Cutting Analyses of the Past Hundred Years
,”
Mech. Eng.
,
78
, pp.
715
721
.
11.
Roth
,
R. N.
and
Oxley
,
P. L. B.
,
1972
, “
A Slip-Line Field Analysis for Orthogonal Machining Based on Experimental Flow Fields
,”
J. Mech. Eng. Sci.
,
14
, pp.
85
97
.
12.
Sekhon
,
G. S.
and
Chenot
,
J. L.
,
1993
, “
Numerical Simulation of Continuous Chip Formation During Non-Steady Orthogonal Cutting
,”
Eng. Comput.
,
10
, pp.
31
48
.
13.
Marusich, T. D., and Ortiz, M., 1994, “Finite Element Simulation of High-Speed Machining,” Proc. ASME Symposium on Mechanics in Materials Processing and Manufacturing, ASME, New York, pp. 137–149.
14.
Belak, J. F., and Stowers, I. F., 1990, “A Molecular Dynamics Model of the Orthogonal Cutting Process,” ASPE Annual Conference, ASPE, Rochester, NY, pp. 259–264.
15.
Inamura
,
T.
and
Takezawa
,
N.
,
1992
, “
Atomic-Scale Cutting in a Computer Using Crystal Models of Copper and Diamond
,”
Annu. CIRP
,
41
, No.
1
, pp.
121
124
.
16.
Ikawa
,
N.
,
Shimada
,
S.
,
Tanaka
,
H.
, and
Ohmori
,
G.
,
1991
, “
An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-Work Interaction in Diamond Turning
,”
Annu. CIRP
,
40
, No.
1
, pp.
551
554
.
17.
Inamura
,
T.
,
Takezawa
,
N.
, and
Kumaki
,
Y.
,
1993
, “
Mechanics and Energy Dissipation in Nanoscale Cutting
,”
Annu. CIRP
,
42
, No.
1
, pp.
79
82
.
18.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
,
Ohmori
,
G.
, and
Uchikoshi
,
J.
,
1993
, “
Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation
,”
Annu. CIRP
,
42
, No.
1
, pp.
91
94
.
19.
Rentsch
,
R.
and
Inasaki
,
I.
,
1995
, “
Investigation of Surface Integrity by Molecular Dynamics Simulation
,”
Annu. CIRP
,
44
, No.
1
, pp.
295
298
.
20.
Bhattacharyya, A., 1984, Metal Cutting, Central Book Publishers, Bombay.
21.
Enahoro
,
H. E.
and
Oxley
,
P. L. B.
,
1966
, “
Flow Along the Chip-Tool Interface in Orthogonal Metal Cutting
,”
J. Mech. Eng. Sci.
,
8
, pp.
36
41
.
22.
Chaudhri
,
M. M.
,
1993
, “
Subsurface Deformation Patterns Around Indentations in Work-Hardened Mild Steel
,”
Philos. Mag. Lett.
,
67
, No.
2
, pp.
107
115
.
23.
Hill
,
R.
,
Lee
,
E. H.
, and
Tupper
,
S. J.
,
1947
, “
The Theory of Wedge Indentation of Ductile Materials
,”
Proc. R. Soc. London, Ser. A
,
188
, pp.
273
289
.
24.
Hutchings
,
I. M.
,
1976
, “
Deformation of Metal Surfaces by the Oblique Impact of Square Plates
,”
Int. J. Mech. Sci.
,
19
, pp.
45
52
.
25.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Metal Cutting
,”
Proc. Inst. Mech. Eng.
,
173
, pp.
623
638
.
26.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
, pp.
43
55
.
27.
Childs
,
T. H. C.
and
Rowe
,
G. W.
,
1973
, “
Physics in Metal Cutting
,”
Rep. Prog. Phys.
,
36
, pp.
223
288
.
28.
Tabor, D., 1951, The Hardness of Metals, Clarendon Press, Oxford,
29.
Wright
,
P. K.
,
Horne
,
J. G.
, and
Tabor
,
D.
,
1979
, “
Boundary Conditions at the Chip-Tool Interface in Machining: Comparisons Between Seizure and Sliding Friction
,”
Wear
,
54
, pp.
371
390
.
You do not currently have access to this content.