The interaction between a semi-infinite crack and a screw dislocation under antiplane mechanical and in-plane electrical loading in a linear piezoelectric material is studied in the framework of linear elasticity theory. A straight dislocation with the Burgers vector normal to the isotropic basal plane near a semi-infinite crack tip is considered. In addition to having a discontinuous electric potential across the slip plane, the dislocation is subjected to a line-force and a line-charge at the core. The explicit solution for the model is derived by means of complex variable and conformal mapping methods. The classical 1/r singularity is observed for the stress, electric displacement, and electric field at the crack tip. The force on a screw dislocation due to the existence of a semi-infinite crack subjected to external electromechanical loads is calculated. Also, the effect of the screw dislocation with the line-force and line-charge at the core on the crack-tip fields is observed through the field intensity factors and the crack extension force. [S0021-8936(00)01501-4]

1.
Faivre
,
G.
, and
Saada
,
G.
,
1972
, “
Dislocations in Piezoelectric Semiconductors
,”
Phys. Status Solidi B
,
52
, p.
127
127
.
2.
Deeg, W. F., 1980, “The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids,” Ph.D. thesis, Stanford University, Stanford, CA.
3.
Pak
,
Y. E.
,
1990
, “
Crack Extension force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
, pp.
647
653
.
4.
Sosa
,
H. A.
, and
Pak
,
Y. E.
,
1990
, “
Three-Dimensional Eigenfunction Analysis of a Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
26
, pp.
1
15
.
5.
Pak
,
Y. E.
,
1990
, “
Force on a Piezoelectric Screw Dislocation
,”
ASME J. Appl. Mech.
,
57
, pp.
863
869
.
6.
Kuo, C.-M., and Barnett, D. M., 1991, Modern Theory of Anisotropic Elasticity and Applications, J. J. Wu, T. C. T. Ting, and D. M. Barnett, eds., SIAM Proceedings, pp. 35–50.
7.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
26
, pp.
739
765
.
8.
Wang
,
B.
,
1992
, “
Three-Dimensional Analysis of an Ellipsoidal Inclusion in Piezoelectric Material
,”
Int. J. Solids Struct.
,
29
, pp.
293
308
.
9.
Chen
,
T.
,
1993
, “
The Rotation of a Rigid Inclusion Embedded in an Anisotropic Piezoelectric Medium
,”
Int. J. Solids Struct.
,
30
, pp.
1983
1995
.
10.
Liang
,
J.
,
Han
,
J.-C.
,
Wang
,
B.
, and
Du
,
S.
,
1995
, “
Electroelastic Modeling of Anisotropic Piezoelectric Materials With an Elliptic Inclusion
,”
Int. J. Solids Struct.
,
32
, pp.
2989
3000
.
11.
Chung
,
M. Y.
, and
Ting
,
T. C. T.
,
1996
, “
Piezoelectric Solid With an Elliptical Inclusion or Hole
,”
Int. J. Solids Struct.
,
33
, pp.
3343
3361
.
12.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1997
, “
Interfacial Debonding of a Circular Inhomogeneity in Piezoelectric Materials
,”
Int. J. Solids Struct.
,
34
, pp.
1965
1984
.
13.
Meguid
,
S. A.
, and
Deng
,
Wei
,
1998
, “
Electro-Elastic Interaction Between a Screw Dislocation and an Elliptical Inhomogeneity in Piezoelectric Materials
,”
Int. J. Solids Struct.
,
35
, pp.
1467
1482
.
14.
Majumdar
,
B. S.
, and
Burns
,
S. J.
,
1981
, “
Crack Tip Shielding—An Elastic Theory of Dislocations and Dislocation Arrays Near a Sharp Crack
,”
Acta Metall.
,
29
, pp.
579
588
.
15.
Ohr
,
S. M.
,
Chang
,
S.-J.
, and
Thomson
,
R.
,
1985
, “
Elastic Interaction of a Wedge Crack With a Screw Dislocation
,”
J. Appl. Phys.
,
57
, pp.
1839
1843
.
16.
Damjanovic
,
D.
,
1997
, “
Stress and Frequency Dependence of the Direct Piezoelectric Effect in Ferroelectric Ceramics
,”
J. Appl. Phys.
,
82
, pp.
1788
1797
.
17.
Pertsev
,
N. A.
,
1988
, “
Changed Dislocations in Ferroelectrics
,”
Sov. Phys. Solid State
,
30
, pp.
1616
1621
.
You do not currently have access to this content.