A wavelet-Galerkin method for periodic heterogeneous media is presented. The advantages are to remove the mesh and to make adaptivity easier. Numerical results are presented. A specific study of interfaces in a Al-SiC composite is given. [S0021-8936(00)00301-9]

1.
Charton
,
P.
, and
Perrier
,
V.
,
1996
, “
A Pseudo-Wavelet Scheme for the Two Dimensional Navier-Stokes Equation
,”
Comp. Appl. Math.
,
15
, pp.
139
160
.
2.
Lazaar
,
S.
,
Ponenti
,
P. J.
,
Liandrat
,
J.
, and
Tchamitchian
,
P.
,
1994
, “
Wavelet Algorithms for Numerical Resolution of Partial Differentiable Equations
,”
Comput. Methods Appl. Mech. Eng.
,
116
, pp.
309
314
.
3.
Dumont, S., 1996, “Ondelettes, Homoge´ne´isation Pe´riodique et Elasticite´,” Ph.D. thesis, Universite´ Montpellier 2.
4.
Dumont
,
S.
, and
Lebon
,
F.
,
1996
, “
Wavelet-Galerkin Method for Heterogeneous Media
,”
Comput. Struct.
,
61
, pp.
55
65
.
5.
Dumont
,
S.
, and
Lebon
,
F.
,
1999
, “
Wavelet-Galerkin Method for Plane Elasticity
,”
Comp. Appl. Math.
,
18
, pp.
127
142
.
6.
Daubechies
,
I.
,
1992
, “
Orthonormal Bases of Compactly Supported Wavelets
,”
Commun. Pure Appl. Math.
,
41
, pp.
909
998
.
7.
Dumont
,
S.
, and
Lebon
,
F.
,
1996
, “
Representation of Plane Elastostatics Operators in Daubechies Wavelets
,”
Comput. Struct.
,
60
, pp.
561
569
.
8.
Hashin
,
Z.
, and
Strickman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
127
140
.
9.
Hill
,
R.
,
1964
, “
Theory of Mechanical Properties of Fiber-Strenghened Materials
,”
J. Mech. Phys. Solids
,
12
, pp.
199
212
.
10.
Bensoussan, A., Lions, J. L., and Papanicolaou, G., 1978, Asymptotic Analysis for Periodic Structures, 1st Ed., North-Holland, Amsterdam.
11.
Dumontet
,
H.
,
1983
, “
Homoge´ne´isation par De´veloppement en Se´ries de Fourier
,”
C. R. Acad. Sci. Paris
,
296
, pp.
1625
1628
.
12.
Beylkin
,
G.
,
1992
, “
On the Representation of Operators in Bases of Compactly Supported Wavelets
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
29
, pp.
1716
1740
.
13.
Hackbusch, W., 1985, Multigrid Method and Applications, Springer-Verlag, New York.
14.
Lebon
,
F.
,
1995
, “
Two-Grid Method for Regularized Frictional Elastostatics Problems
,”
Eng. Comput.
,
12
, pp.
657
664
.
15.
Ould Khaoua, A., 1995, “Etude The´orique et Nume´rique de Proble`mes de Couches Minces,” Ph.D. thesis, Universite´ Montpellier 2.
16.
Ould Khaoua, A., Lebon, F., Licht, C., and Michaille, G., 1996, “Thin Layers in Elasticity: A Theoretical and Numerical Study,” Proceedings of the 1996 ESDA Conference, Vol. 4, ASME, New York, pp. 171–178.
17.
Lebon
,
F.
,
Ould Khaoua
,
A.
, and
Licht
,
C.
,
1997
, “
Numerical Study of Soft Adhesively Bonded Joints in Finite Elasticity
,”
Comp. Mech.
,
21
, pp.
134
140
.
18.
Garboczi
,
E. J.
, and
Bentz
,
D. P.
,
1991
, “
Digital Simulation of Interfacial Packing in Concrete
,”
J. Mater. Res.
,
6
, pp.
196
201
.
19.
Herve´
,
E.
, and
Zaoui
,
A.
,
1995
, “
Elastic Behavior of Multiply Coated Fibre-Reinforced Composites
,”
Int. J. Eng. Sci.
,
33
, pp.
1419
1433
.
20.
Lagache
,
M.
,
Agbossou
,
A.
,
Pastor
,
J.
, and
Muller
,
D.
,
1994
, “
Role of Interphase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,”
J. Compos. Mater.
,
28
, pp.
1140
1157
.
You do not currently have access to this content.