In this second part, we examine the contact pressure ratio, Ptr, at the lowest points of the upper mold surface troughs in a directional solidification process using the theoretical methodology developed in Part I. Since there is ample experimental evidence that the mold surface topography affects gap nucleation at the mold-shell interface and the uniformity of the shell, we explore how the wavelength of the upper mold surface impacts the evolution of Ptr for specific material combinations and process parameters. For this purpose, the mold-shell materials are assumed to be combinations of four pure materials, viz., aluminum, copper, iron and lead: these materials offer a wide range of thermal and mechanical properties. Critical wavelengths, for which Ptr and its time derivative simultaneously equal zero, are predicted for all mold-shell material combinations. The theoretical model also predicts the existence of wavelength bands which are delimited by upper and lower critical wavelengths. All wavelengths that lie within the bands lead to gap nucleation, whereas all wavelengths that lie outside of the bands do not. The effects of distortivity ratio, which is a measure of the extent to which the mold-shell interface deforms under a given thermal loading, and selected process parameters (such as the mean mold thickness, contact resistance, and pressure) on bandwidth size, are considered in detail. Extensions of the present work to more sophisticated models that might lead to rudimentary mold topography design criteria are considered. [S0021-8936(00)03301-8]

1.
Murakami
,
H.
,
Suzuki
,
M.
,
Kitagawa
,
T.
, and
Miyahara
,
S.
,
1992
, “
Control of Uneven Solidified Shell Formation of Hypo-peritectic Carbon Steels in Continuous Casting Mold
,”
J. Iron Steel Inst. Jpn.
,
78
, pp.
105
112
.
2.
Singh, S., and Blazek, K., 1974, “Heat Transfer and Skin Formation in a Continuous Casting Mold as a Function of Steel Carbon Content,” J. Metals, pp. 17–27.
3.
Yigit
,
F.
, and
Hector
, Jr.,
L. G.
,
2000
, “
Critical Wavelengths for Gap Nucleation in Solidification. Part 1: Theoretical Methodology
,”
ASME J. Appl. Mech.
,
67
, pp.
66
76
.
4.
Weirauch, Jr., D. A., and Giron, A., 1998, “The Early Stages of Aluminum Solidification in the Presence of a Moving Meniscus,” Proceedings on the Integration of Material, Process and Product Design—A Conference dedicated to the 70th birthday of Owen Richmond, A. A. Balkema Publishers, Rotterdam, Netherlands, pp. 183–191.
5.
Schneck
,
P.
, and
Veronis
,
G.
,
1967
, “
Comparison of Some Recent Experimental and Numerical Results in Be´nard Convection
,”
Phys. Fluids
,
10
, pp.
927
930
.
6.
Hector
, Jr.,
L. G.
, and
Schmid
,
S. R.
,
1997
, “
Simulation of Asperity Plowing in an Atomic Force Microscope. Part I: Experimental and Theoretical Methods
,”
Wear
,
215
, pp.
247
256
.
7.
Yun
,
I.-S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Chatter in the Strip Rolling Process
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
330
336
.
8.
Broadbridge
,
P.
,
Fulford
,
G. R.
,
Fowkes
,
N. D.
,
Chan
,
D. Y. C.
, and
Lassig
,
C.
,
1999
, “
Bubbles in Wet, Gummed Wine Labels
,”
SIAM Rev.
,
41
, pp.
363
372
.
9.
Brush, D. O., and Almroth, B. O., 1975, Buckling of Bars, Plates, and Shells, McGraw-Hill, New York.
10.
Richmond, O., 1987, personal communication with L. G. Hector, Jr., Alcoa Laboratories, Alcoa Technical Center, PA.
11.
Yeo
,
T.
, and
Barber
,
J. R.
,
1994
, “
Finite Element Analysis of Thermoelastic Contact Stability
,”
ASME J. Appl. Mech.
,
61
, pp.
919
922
.
12.
Richmond
,
O.
,
Hector
, Jr.,
L. G.
, and
Fridy
,
J. M.
,
1990
, “
Growth Instability During Nonuniform Directional Solidification of Pure Metals
,”
ASME J. Appl. Mech.
,
57
, pp.
529
536
.
13.
Heinlein
,
M.
,
Mukherjee
,
S.
, and
Richmond
,
O.
,
1986
, “
A Boundary Element Method of Analysis of Temperature Fields and Stresses During Solidification
,”
Acta Mech.
,
59
, pp.
59
81
.
14.
Boltz, R. E., and Tuve, G. L., 1984, CRC Handbook of Tables for Applied Engineering and Science, CRC Press, Boca Raton, FL.
15.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., 1970, Thermophysical Properties of Matter: Thermal Conductivity, Vol. 1, IFI/Plenum, New York.
16.
Lucas
,
L. D.
,
1972
, “
Density of Metals at High Temperatures in the Solid and Molten States, Part 2
,”
Mem. Sci. Rev. Met.
,
69
, No.
6
, pp.
479
492
.
17.
Lucas
,
L. D.
,
1972
, “
Density of Metals at High Temperatures in the Solid and Molten States, Part 1
,”
Mem. Sci. Rev. Met.
,
69
, No.
5
, pp.
395
409
.
18.
Mathiak
,
E.
,
Nistler
,
E.
,
Waschkowski
,
W.
, and
Koester
,
L.
,
1983
, “
Precision Density Measurements of Liquid Gallium, Tin, Cadmium, Thallium, Lead and Bismuth
,”
Z. Metallkd.
,
74
, pp.
793
796
.
19.
Baumeister, T., Avallone, E. A., and Baumeister, III, T., 1978, Marks’ Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, New York.
20.
Wawra
,
H. H.
,
1974
, “
The Elastomechanical Properties of Pure Iron and FeS2 in Different Crystallographic Directions as a Function of Temperature and Pressure
,”
Arch. Eisenhuettenwes.
,
45
, No.
5
, pp.
317
320
.
21.
Ledbetter
,
H. M.
, and
Naimon
,
E. R.
,
1974
, “
Elastic Properties of Metals and Alloys, II. Coper
,”
J. Phys. Chem. Ref. Data
,
3
, pp.
897
935
.
22.
Drapkin
,
B. M.
,
Birfel’d
,
A. A.
,
Kononenko
,
V. K.
, and
Kalyukin
,
H. P.
,
1980
, “
Study of the Young’s Modulus and Internal Friction in the Range 20°C to Tm Inclusive
,”
Phys. Met. Metallogr.
,
49
, pp.
150
155
.
23.
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D., 1978, Thermophysical Properties of Matter: Thermal Expansion, Vol. 12, IFI/Plenum, New York.
24.
Wawra
,
H. H.
,
1978
, “
Accurate Elastomechanical Values of Copper Materials
,”
Metall.
,
32
, pp.
346
348
.
25.
Hector
, Jr.,
L. G.
,
Howarth
,
J. A.
,
Richmond
,
O.
, and
Kim
,
W.-S.
,
2000
, “
Mold Surface Wavelength Effect on Gap Nucleation in Solidification
,”
ASME J. Appl. Mech.
,
67
, pp.
155
164
.
26.
Dundurs
,
J.
,
1974
, “
Distortion of a Body Caused by Free Thermal Expansion
,”
Mech. Res. Commun.
,
1
, pp.
121
124
.
27.
Zhang
,
R. G.
, and
Barber
,
J. R.
,
1990
, “
Effect of Material Properties on the Stability of Static Thermoelastic Contact
,”
ASME J. Appl. Mech.
,
57
, pp.
365
369
.
You do not currently have access to this content.