This article provides a comprehensive treatment of cracks in nonhomogeneous structural materials such as functionally graded materials. It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using a laminated composite plate model to simulate the material nonhomogeneity, we present an algorithm for solving the system based on the Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problems in the functionally graded materials with arbitrarily varying material properties. The algorithm can be applied to steady state or transient thermoelastic fracture problem with the inertial terms taken into account. As a numerical illustration, transient thermal stress intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of nonhomogeneous material with properties varying in the thickness direction. [S0021-8936(00)01601-9]

1.
Saito, M., and Takahashi, H., 1990, “Development of Small Punch Test Procedure for FGM Fabrication,” FGM-90: Proc. First Int. Symposium on Functionally Gradient Materials, M. Yamanouchi et al., eds., FGM Forum, Tokyo, Japan, pp. 297–305.
2.
Jin, Z. H., and Noda, N., 1993, “Minimization of Thermal Stress Intensity Factors for a Crack in a Metal-Ceramic Mixture,” Ceramics Transactions, Functionally Gradient Materials, Vol. 34, J. B. Holt et al., eds., The American Ceramic Society, OH.
3.
Jin
,
Z. H.
, and
Noda
,
N.
,
1993
, “
An Internal Crack Parallel to the Boundary of a Nonhomogeneous Half Plane Under Thermal Loading
,”
Int. J. Eng. Sci.
,
31
, pp.
793
806
.
4.
Noda
,
N.
, and
Jin
,
Z. H.
,
1993
, “
Thermal Stress Intensity Factors for a Crack in a Functionally Gradient Material
,”
Int. J. Solids Struct.
,
30
, pp.
1039
1056
.
5.
Noda
,
N.
, and
Jin
,
Z. H.
,
1993
, “
Steady Thermal Stresses in an Infinite Non-Homogeneous Elastic Solid Containing a Crack
,”
J. Thermal Stresses
,
16
, pp.
181
197
.
6.
Noda
,
N.
, and
Jin
,
Z. H.
,
1994
, “
A Crack in a Functionally Gradient Material Under Thermal Shock
,”
Arch. Appl. Mech
,
64
, pp.
99
110
.
7.
Jin
,
Z. H.
, and
Noda
,
N.
,
1994
, “
Transient Thermal Stress Intensity Factors for a Crack in a Semi-Infinite Plate of a Functionally Gradient Material
,”
Int. J. Solids Struct.
,
31
, pp.
203
218
.
8.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1996
, “
Crack Problem in FGM Layers Under Thermal Stresses
,”
J. Thermal Stresses
,
19
, pp.
237
265
.
9.
Jin
,
Z. H.
, and
Noda
,
N.
,
1994
, “
Edge Crack in a Nonhomogeneous Half Plane Under Thermal Loading
,”
J. Thermal Stresses
,
17
, pp.
591
599
.
10.
Nemat-Alla
,
M.
, and
Noda
,
N.
,
1996
, “
Study of an Edge Crack Problem in a Semi-Infinite Functionally Graded Medium with Two Dimensionally Non-Homogeneous Coefficients of Thermal Expansion Under Thermal Loading
,”
J. Thermal Stresses
,
19
, pp.
863
888
.
11.
Jin
,
Z. H.
, and
Batra
,
R. C.
,
1996
, “
Stress Intensity Relaxation at the Tip of an Edge Crack in a Functionally Graded Material Subjected to a Thermal Shock
,”
J. Thermal Stresses
,
19
, pp.
317
339
.
12.
Noda
,
N.
,
1997
, “
Thermal Stress Intensity Factor for Functionally Gradient Plate With an Edge Crack
,”
J. Thermal Stresses
,
20
, pp.
373
387
.
13.
Zuiker
,
J. R.
,
1995
, “
Functionally Graded Materials: Choice of Micromechanics Model and Limitations in Property Variation
,”
Composites Eng.
,
5
, pp.
807
819
.
14.
Miller
,
M. K.
, and
Guy
,
W. T.
,
1966
, “
Numerical Inversion of the Laplace Transform by Use of Jacobi Polynomials
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
3
, pp.
624
635
.
15.
Williams
,
M. L.
,
1959
, “
The Stress Around a Fault of Crack in Dissimilar Media
,”
Bull. Seismol. Soc. Am.
,
49
, pp.
199
204
.
16.
Christensen, R. M., 1979, Mechanics of Composite Materials, John Wiley and Sons, New York.
17.
Christensen
,
R. M.
, and
Lo
,
K. H.
,
1979
, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
,
27
, pp.
315
330
.
18.
Bao
,
G.
, and
Wang
,
L.
,
1995
, “
Multiple Cracking in Functionally Graded Ceramic/Metal Coatings
,”
Int. J. Solids Struct.
,
32
, pp.
2853
2871
.
19.
Jin
,
Z. H.
, and
Batra
,
R. C.
,
1996
, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
44
, pp.
1221
1235
.
20.
Delale
,
F.
, and
Erdogan
,
F.
,
1983
, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME J. Appl. Mech.
,
50
, pp.
609
613
.
21.
Delale
,
F.
, and
Erdogan
,
F.
,
1988
, “
On the Mechanical Modeling of the Interfacial Region in Bonded Half-Planes
,”
ASME J. Appl. Mech.
,
55
, pp.
317
324
.
22.
Delale
,
F.
, and
Erdogan
,
F.
,
1988
, “
Interface Crack in a Nonhomogeneous Elastic Medium
,”
Int. J. Eng. Sci.
,
26
, pp.
559
568
.
23.
Erdogan
,
F.
, and
Ozturk
,
M.
,
1992
, “
Diffusion Problems in Bonded Nonhomogeneous Materials With an Interface Cut
,”
Int. J. Eng. Sci.
,
30
, pp.
1507
1523
.
24.
Matsunaga
,
Y.
, and
Noda
,
N.
,
1996
, “
Transient Thermoelastic Problem for a Infinite Plate Containing a Penny-Shaped Crack at an Arbitrary Position
,”
J. Thermal Stresses
,
19
, pp.
379
394
.
25.
Tsuji
,
T.
, et al.
,
1986
, “
Transient Thermal Stresses in a Half Plane With a Crack Parallel to the Surface
,”
Bull. JSME
,
29
, pp.
343
347
.
26.
Kawamura
,
R.
, and
Tanigawa
,
Y.
,
1995
, “
Nonlinear Thermal Bending Problem of Nonhomogeneous Beam Due to Unsteady Thermal Supply
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
61
, pp.
777
783
.
27.
Ootao
,
Y.
,
Akai
,
T.
, and
Tanigawa
,
Y.
,
1993
, “
Three-Dimensional Transient Thermal Stress Analysis of Nonhomogeneous Hollow Circular Cylinder
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
59
, pp.
1684
1690
.
28.
Ootao
,
Y.
, and
Tanigawa
,
Y.
,
1994
, “
Three-Dimensional Transient Thermal Stress Analysis of a Nonhomogeneous Hollow Sphere with Respect to Rotating Heating Source
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
60
, pp.
2273
2279
.
29.
Ootao
,
Y.
,
Tanigawa
,
Y.
,
Kasai
,
T.
, and
Nakanishi
,
N.
,
1992
, “
Inverse Problem Analysis of Transient Thermal Stresses in a Nonhomogeneous Solid Circular Cylinder Due to Asymmetric Heating
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
58
, pp.
567
573
.
30.
Tanigawa
,
Y.
,
Akai
,
T.
,
Kawamura
,
R.
, and
Oka
,
N.
,
1996
, “
Transient Heat Conduction and Thermal Stresses Problems of a Nonhomogeneous Plate with Temperature Dependent Material Properties
,”
J. Thermal Stresses
,
19
, pp.
77
102
.
31.
Tanigawa
,
Y.
,
Matsumoto
,
M.
, and
Akai
,
T.
,
1996
, “
Optimization Problem of Material Composition for Nonhomogeneous Plate to Minimize Thermal Stresses When Subjected to Unsteady Heat Supply
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
62
, pp.
115
122
.
32.
Tanigawa
,
Y.
,
Oka
,
N.
,
Akai
,
T.
, and
Kawamura
,
R.
,
1996
, “
One-Dimensional Transient Thermal Stress Problem for Nonhomogeneous Hollow Circular Cylinder and Its Optimization
,”
Trans. Jpn. Soc. Mech. Eng., Ser. A
,
62
, pp.
128
136
.
You do not currently have access to this content.