An expression for the driving traction on an interface is derived for an arbitrary continuum undergoing an arbitrary thermomechanical process which may or may not be adiabatic. [S0021-8936(00)00403-7]

1.
Eshelby, J. D., 1956, “Continuum Theory of Lattice Defects,” Solid State Physics, Vol. 3, F. Seitz and D. Turnbull, eds., Academic Press, San Diego, pp. 79–144.
2.
Callen, H. B., 1985, Thermodynamics and an Introduction to Thermostatistics, Second Ed., John Wiley and Sons, New York, Chapter 14.
3.
Kestin, J., 1968, A Course on Thermodynamics, Vol. II, McGraw-Hill, New York, Chapter 14.
4.
Truesdell, C., 1969, Rational Thermodynamics (Lecture 7), Springer-Verlag, New York.
5.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1990
, “
On the Driving Traction Acting on a Surface of Strain Discontinuity in a Continuum
,”
J. Mech. Phys. Solids
,
38
, pp.
345
360
.
6.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1991
, “
Kinetic Relations and the Propagation of Phase Boundaries in Solids
,”
Arch. Ration. Mech. Anal.
,
114
, pp.
119
154
.
7.
Abeyaratne
,
R.
,
Kim
,
S-J.
, and
Knowles
,
J. K.
,
1994
, “
A One-Dimensional Continuum Model for Shape-Memory Alloys
,”
Int. J. Solids Struct.
,
31
, pp.
2229
2249
.
8.
Rosakis
,
P.
, and
Tsai
,
H.
,
1995
, “
Dynamic Twinning Processes in Crystals
,”
Int. J. Solids Struct.
,
32
, pp.
2711
2723
.
9.
Heidug
,
W.
, and
Lehner
,
F. K.
,
1985
, “
Thermodynamics of Coherent Phase Transformations in Non-Hydrostatically Stressed Solids
,”
Pure Appl. Geophys.
,
123
, pp.
91
98
.
10.
Truskinovsky
,
L.
,
1985
, “
Structure of an Isothermal Phase Discontinuity
,”
Sov. Phys. Dokl.
,
30
, pp.
945
948
.
11.
Abeyaratne
,
R.
, and
Knowles
,
J. K.
,
1994
, “
Dynamics of Propagating Phase Boundaries: Adiabatic Theory for Thermoelastic Solids
,”
Physica D
,
79
, pp.
269
288
.
12.
Chadwick, P., 1976, Continuum Mechanics, John Wiley and Sons, New York.
You do not currently have access to this content.