An expression for the driving traction on an interface is derived for an arbitrary continuum undergoing an arbitrary thermomechanical process which may or may not be adiabatic. [S0021-8936(00)00403-7]
Issue Section:
Brief Notes
1.
Eshelby, J. D., 1956, “Continuum Theory of Lattice Defects,” Solid State Physics, Vol. 3, F. Seitz and D. Turnbull, eds., Academic Press, San Diego, pp. 79–144.
2.
Callen, H. B., 1985, Thermodynamics and an Introduction to Thermostatistics, Second Ed., John Wiley and Sons, New York, Chapter 14.
3.
Kestin, J., 1968, A Course on Thermodynamics, Vol. II, McGraw-Hill, New York, Chapter 14.
4.
Truesdell, C., 1969, Rational Thermodynamics (Lecture 7), Springer-Verlag, New York.
5.
Abeyaratne
, R.
, and Knowles
, J. K.
, 1990
, “On the Driving Traction Acting on a Surface of Strain Discontinuity in a Continuum
,” J. Mech. Phys. Solids
, 38
, pp. 345
–360
.6.
Abeyaratne
, R.
, and Knowles
, J. K.
, 1991
, “Kinetic Relations and the Propagation of Phase Boundaries in Solids
,” Arch. Ration. Mech. Anal.
, 114
, pp. 119
–154
.7.
Abeyaratne
, R.
, Kim
, S-J.
, and Knowles
, J. K.
, 1994
, “A One-Dimensional Continuum Model for Shape-Memory Alloys
,” Int. J. Solids Struct.
, 31
, pp. 2229
–2249
.8.
Rosakis
, P.
, and Tsai
, H.
, 1995
, “Dynamic Twinning Processes in Crystals
,” Int. J. Solids Struct.
, 32
, pp. 2711
–2723
.9.
Heidug
, W.
, and Lehner
, F. K.
, 1985
, “Thermodynamics of Coherent Phase Transformations in Non-Hydrostatically Stressed Solids
,” Pure Appl. Geophys.
, 123
, pp. 91
–98
.10.
Truskinovsky
, L.
, 1985
, “Structure of an Isothermal Phase Discontinuity
,” Sov. Phys. Dokl.
, 30
, pp. 945
–948
.11.
Abeyaratne
, R.
, and Knowles
, J. K.
, 1994
, “Dynamics of Propagating Phase Boundaries: Adiabatic Theory for Thermoelastic Solids
,” Physica D
, 79
, pp. 269
–288
.12.
Chadwick, P., 1976, Continuum Mechanics, John Wiley and Sons, New York.
Copyright © 2000
by ASME
You do not currently have access to this content.