A dispersive model is developed for wave propagation in periodic heterogeneous media. The model is based on the higher order mathematical homogenization theory with multiple spatial and temporal scales. A fast spatial scale and a slow temporal scale are introduced to account for the rapid spatial fluctuations as well as to capture the long-term behavior of the homogenized solution. By this approach the problem of secularity, which arises in the conventional multiple-scale higher order homogenization of wave equations with oscillatory coefficients, is successfully resolved. A model initial boundary value problem is analytically solved and the results have been found to be in good agreement with a numerical solution of the source problem in a heterogeneous medium.

1.
Sun
,
C. T.
,
Achenbach
,
J. D.
, and
Herrmann
,
G.
,
1968
, “
Continuum Theory for a Laminated Medium
,”
ASME J. Appl. Mech.
,
35
, pp.
467
475
.
2.
Hegemier
,
G. A.
, and
Nayfeh
,
A. H.
,
1973
, “
A Continuum Theory for Wave Propagation in Laminated Composites. Case I: Propagation Normal to the Laminates
,”
ASME J. Appl. Mech.
,
40
, pp.
503
510
.
3.
Bedford, A., Drumheller, D. S., and Sutherland, H. J., 1976, “On Modeling the Dynamics of Composite Materials,” Mechanics Today, Vol. 3, S. Nemat-Nasser, ed., Pergamon Press, New York, pp. 1–54.
4.
Sanchez-Palencia, E., 1980, Non-homogeneous Media and Vibration Theory, Springer, Berlin.
5.
Benssousan, A., Lions, J. L., and Papanicoulau, G., 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.
6.
Bakhvalov, N. S., and Panasenko, G. P., 1989, Homogenization: Averaging Processes in Periodic Media, Kluwer, Dordrecht.
7.
Gambin
,
B.
, and
Kroner
,
E.
,
1989
, “
High Order Terms in the Homogenized Stress-Strain Relation of Periodic Elastic Media
,”
Phys. Status Solidi
,
51
, pp.
513
519
.
8.
Boutin
,
C.
,
1996
, “
Microstructural Effects in Elastic Composites
,”
Int. J. Solids Struct.
,
33
, No.
7
, pp.
1023
1051
.
9.
Boutin
,
C.
, and
Auriault
,
J. L.
,
1993
, “
Rayleigh Scattering in Elastic Composite Materials
,”
Int. J. Eng. Sci.
,
31
, No.
12
, pp.
1669
1689
.
10.
Kevorkian
,
J.
, and
Bosley
,
D. L.
,
1998
, “
Multiple-Scale Homogenization for Weakly Nonlinear Conservation Laws With Rapid Spatial Fluctuations
,”
Stud. Appl. Math.
,
101
, pp.
127
183
.
11.
Fish, J., and Chen, W., 1999, “High-Order Homogenization of Initial/Boundary-Value Problem With Oscillatory Coefficients. Part I: One-Dimensional Case,” ASOE J. Eng. Mech., submitted for publication.
12.
Boutin
,
C.
, and
Auriault
,
J. L.
,
1990
, “
Dynamic Behavior of Porous Media Saturated by a Viscoelastic Fluid: Application to Bituminous Concretes
,”
Int. J. Eng. Sci.
,
28
, No.
11
, pp.
1157
1181
.
13.
Francfort
,
G. A.
,
1983
, “
Homogenization and Linear Thermoelasticity
,”
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
,
14
, No.
4
, pp.
696
708
.
14.
Maugin, G. A., 1994, “Physical and Mathematical Models of Nonlinear Waves in Solids,” Nonlinear Waves in Solids, A. Jeffrey, and J. Engelbrecht, eds., Springer, Wien.
15.
Whitham, G. B., 1974, Linear and Nonlinear Waves, John Wiley and Sons, New York.
16.
Murakami
,
H.
, and
Hegemier
,
G. A.
,
1986
, “
A Mixture Model for Unidirectionally Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
53
, pp.
765
773
.
17.
Santosa
,
F.
, and
Symes
,
W. W.
, , “
A Dispersive Effective Medium for Wave Propagation in Periodic Composites
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
51
, No. 4, pp.
984
1005
.
18.
Mei, C. C., Auriault J. L., and Ng, C. O., 1996, “Some Applications of the Homogenization Theory,” Advances in Applied Mechanics, Vol. 32, J. W. Hutchinson and T. Y. Wu, eds., Academic Press, Boston, pp. 277–348.
19.
Mclachlan, N. W., 1947, Complex Variable and Operational Calculus With Technical Applications, Macmillan, New York.
20.
Thomson, W. T., 1950, Laplace Transformation, Prentice-Hall, New York.
You do not currently have access to this content.