An infinite number of closed-form solutions is reported for a deterministically or stochastically nonhomogeneous beam, for both natural frequencies and reliabilities, for specialized cases. These solutions may prove useful as benchmark solutions. Numerical examples are evaluated.

1.
Eisenberger, M., 1997, “Dynamic Stiffness Vibration Analysis of Non-Uniform Members,” International Symposium on Vibrations on Continuous Systems (A. W. Leissa, organizer), Estes Park, CO, Aug. 11–15, pp. 13–15.
2.
Rollot
,
O.
, and
Elishakoff
,
I.
,
1999
, “
A Note on New Closed-Form Solutions for Buckling of a Variable Stiffness Column by Mathematica®
,”
J. Sound Vib.
,
224
, No.
1
, pp.
172
182
.
3.
Ko¨ylu¨og˘lu, H., Cakmak, A. S., and Nielsen, S. A. K., 1994, “Response of Stochastically Loaded Bernoulli-Euler Beams with Randomly Varying Bending Stiffness,” Structural Safety and Reliability, G. I. Schue¨ller, M. Shinozuka, and J. T. P. Yao, eds., pp. 267–274.
4.
Elishakoff
,
I.
,
Ren
,
Y. J.
, and
Shinozuka
,
M.
,
1995
, “
Some Exact Solutions for Bending of Beams With Spatially Stochastic Stiffness
,”
Int. J. Solids Struct.
,
32
, pp.
2315
2327
(Corrigendum: 33, p. 3491, 1996).
5.
Shinozuka
,
M.
, and
Astill
,
C. J.
,
1972
, “
Random Eigenvalue Problems in Structural Analysis
,”
AIAA J.
,
10
, pp.
456
462
.
6.
Zhu, W. Q., and Wu, W. Q., 1991, “A Stochastic Finite Element Method for Real Eigenvalue Problem,” Stochastic Structural Dynamics, Vol. 2, I. Elishakoff and Y. K. Lin, eds., Springer-Verlag, Berlin, pp. 337–351.
7.
Nigam, N. C., 1983, Introduction to Random Vibrations, MIT Press, Cambridge, MA, pp. 258–259.
8.
Ariaratnam
,
S. T.
,
1960
, “
Random Vibration of Nonlinear Suspensions
,”
J. Mech. Eng. Sci.
,
2
, No.
3
, pp.
195
201
.
9.
Caughey
,
T. K.
,
1963
, “
Derivation and Application of the Fokker-Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to White Random Excitation
,”
J. Acoust. Soc. Am.
,
35
, No.
11
, pp.
1683
1692
.
10.
Dimentberg, 1982,
11.
Soize
,
C.
,
1988
, “
Steady-State Solution of Fokker-Planck Equation in High Dimension
,”
Probabilistic Engineering Mechanics
,
3
, pp.
196
206
.
12.
Scheurkogel, A., and Elishakoff, I., 1988, “Nonlinear Random Vibration of a Two Degree-of-Freedom Systems,” Non-Linear Stochastic Engineering Systems, F. Ziegler and G. I. Schue¨ller, eds., Springer, Berlin, pp. 285–299.
13.
Timoshenko, S. P., 1953, History of Strength of Materials, McGraw-Hill, New York.
14.
Gladwell, G. M. L., 1986, Inverse Problems in Vibration, Martinus Nijhoff Publishers, Dordrecht.
15.
Gladwell
,
G. M. L.
,
1996
, “
Inverse Problem in Vibration II
,”
Appl. Mech. Rev.
,
49
, No.
10
, Part 2, pp.
13
15
.
You do not currently have access to this content.