An infinite number of closed-form solutions is reported for a deterministically or stochastically nonhomogeneous beam, for both natural frequencies and reliabilities, for specialized cases. These solutions may prove useful as benchmark solutions. Numerical examples are evaluated.
Issue Section:
Technical Papers
1.
Eisenberger, M., 1997, “Dynamic Stiffness Vibration Analysis of Non-Uniform Members,” International Symposium on Vibrations on Continuous Systems (A. W. Leissa, organizer), Estes Park, CO, Aug. 11–15, pp. 13–15.
2.
Rollot
, O.
, and Elishakoff
, I.
, 1999
, “A Note on New Closed-Form Solutions for Buckling of a Variable Stiffness Column by Mathematica®
,” J. Sound Vib.
, 224
, No. 1
, pp. 172
–182
.3.
Ko¨ylu¨og˘lu, H., Cakmak, A. S., and Nielsen, S. A. K., 1994, “Response of Stochastically Loaded Bernoulli-Euler Beams with Randomly Varying Bending Stiffness,” Structural Safety and Reliability, G. I. Schue¨ller, M. Shinozuka, and J. T. P. Yao, eds., pp. 267–274.
4.
Elishakoff
, I.
, Ren
, Y. J.
, and Shinozuka
, M.
, 1995
, “Some Exact Solutions for Bending of Beams With Spatially Stochastic Stiffness
,” Int. J. Solids Struct.
, 32
, pp. 2315
–2327
(Corrigendum: 33, p. 3491, 1996).5.
Shinozuka
, M.
, and Astill
, C. J.
, 1972
, “Random Eigenvalue Problems in Structural Analysis
,” AIAA J.
, 10
, pp. 456
–462
.6.
Zhu, W. Q., and Wu, W. Q., 1991, “A Stochastic Finite Element Method for Real Eigenvalue Problem,” Stochastic Structural Dynamics, Vol. 2, I. Elishakoff and Y. K. Lin, eds., Springer-Verlag, Berlin, pp. 337–351.
7.
Nigam, N. C., 1983, Introduction to Random Vibrations, MIT Press, Cambridge, MA, pp. 258–259.
8.
Ariaratnam
, S. T.
, 1960
, “Random Vibration of Nonlinear Suspensions
,” J. Mech. Eng. Sci.
, 2
, No. 3
, pp. 195
–201
.9.
Caughey
, T. K.
, 1963
, “Derivation and Application of the Fokker-Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to White Random Excitation
,” J. Acoust. Soc. Am.
, 35
, No. 11
, pp. 1683
–1692
.10.
Dimentberg, 1982,
11.
Soize
, C.
, 1988
, “Steady-State Solution of Fokker-Planck Equation in High Dimension
,” Probabilistic Engineering Mechanics
, 3
, pp. 196
–206
.12.
Scheurkogel, A., and Elishakoff, I., 1988, “Nonlinear Random Vibration of a Two Degree-of-Freedom Systems,” Non-Linear Stochastic Engineering Systems, F. Ziegler and G. I. Schue¨ller, eds., Springer, Berlin, pp. 285–299.
13.
Timoshenko, S. P., 1953, History of Strength of Materials, McGraw-Hill, New York.
14.
Gladwell, G. M. L., 1986, Inverse Problems in Vibration, Martinus Nijhoff Publishers, Dordrecht.
15.
Gladwell
, G. M. L.
, 1996
, “Inverse Problem in Vibration II
,” Appl. Mech. Rev.
, 49
, No. 10
, Part 2, pp. 13
–15
.Copyright © 2001
by ASME
You do not currently have access to this content.