A boundary element method using Laplace transform in time domain is developed for the analysis of fracture mechanic under coupled thermoelastic assumption. The transient coupled thermoelastic field is solved without need for domain discretization. The singular behavior of the temperature and displacement fields in the vicinity of the crack tip is modeled by quarter-point elements. Thermal dynamic stress intensity factors for mode I are evaluated from computed nodal values, using the well-known displacement and traction formulas. The accuracy of the method is investigated through comparison of the results with the available data in literature. The conditions where the inertia term plays an important role is discussed and variations of the dynamic stress intensity factor is investigated.

1.
Sih
,
G. C.
,
1962
, “
On the Singular Character of Thermal Stress Near a Crack Tip
,”
ASME J. Appl. Mech.
,
29
, pp.
587
589
.
2.
Kassir
,
M. K.
, and
Bergman
,
A. M.
,
1971
, “
Thermal Stress in a Solid Containing Parallel Circular Crack
,”
Appl. Sci. Res.
,
25
, pp.
262
280
.
3.
Wilson
,
W. K.
, and
Yu
,
I. W.
,
1979
, “
The Use of the J-Integral in Thermal Stress Crack Problems
,”
Int. J. Fract.
,
15
, pp.
377
387
.
4.
Nied
,
H. F.
,
1983
, “
Thermal Shock Fracture in an Edge-Cracked Plate
,”
J. Therm. Stresses
,
6
, pp.
217
229
.
5.
Chen
,
T. C.
, and
Weng
,
C. I.
,
1991
, “
Coupled Transient Thermoelastic Response in an Edge-Cracked Plate
,”
Eng. Fract. Mech.
,
39
, pp.
915
925
.
6.
Lee
,
K. Y.
, and
Sim
,
K.
,
1990
, “
Thermal Shock Stress Intensity Factor by Bueckner’s Weight Function Method
,”
Eng. Fract. Mech.
,
37
, pp.
799
804
.
7.
Rizk
,
A. E. A.
,
1993
, “
A Cracked Plate Under Transient Thermal Stresses Due to Surface Heating
,”
Eng. Fract. Mech.
,
45
, pp.
687
696
.
8.
Raveendra
,
S. T.
, and
Banerjee
,
P. K.
,
1992
, “
Boundary Element Analysis of Cracks in Thermally Stressed Planar Structures
,”
Int. J. Solids Struct.
,
29
, No.
18
, pp.
2301
2317
.
9.
Portela
,
A.
, and
Aliabadi
,
M. H.
,
1992
, “
The Dual BEM Effective Implementation for Crack Problems
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
1269
1287
.
10.
Prasad
,
N. N. V.
, and
Aliabadi
,
M. A.
,
1994
, “
The Dual BEM for Thermoelastic Crack Problems
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
169
187
.
11.
Prasad
,
N. N. V.
, and
Aliabadi
,
M. A.
,
1996
, “
The Dual BEM for Transient Thermoelastic Crack Problems
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
169
187
.
12.
Katsareas
,
D. E.
, and
Anifantis
,
N. K.
,
1995
, “
On the Computation of Mode I and II Thermal Shock Stress Intensity Factors Using a Boundary-Only Element Method
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
4157
4169
.
13.
Hosseini-Tehrani
,
P.
, and
Eslami
,
M. R.
,
2000
, “
Boundary Element Analysis of Coupled Thermoelasticity With Relaxation Times in Finite Domain
,”
AIAA J.
,
38
, No.
3
, pp.
534
541
.
14.
Durbin
,
F.
,
1974
, “
Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s method
,”
Comput. J.
,
17
, pp.
371
378
.
15.
Kanninen, M. F., and Popelar, C. H., 1985, Advanced Fracture Mechanics, Oxford University Press, New York.
16.
Blanford
,
G. E.
,
1981
, “
T-D Stress Intensity Factor Computations Using the BEM
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
387
404
.
17.
Martinez
,
J.
, and
Dominguez
,
J.
,
1984
, “
On the Use of Quarter-Point Boundary Elements for Stress Intensity Factor Computations
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
1941
1950
.
18.
Boley, B. A., and Winer, J. H., 1960, Theory of Thermal Stresses, John Wiley and Sons, New York.
19.
Jadeja
,
N. D.
, and
Loo
,
T. C.
,
1974
, “
Heat Induced Vibration of a Rectangular Plate
,”
J. Eng. Ind.
,
96
, pp.
1015
1021
.
20.
Tosaka, N., 1986, “Boundary Integral Equation Formulations for Linear Coupled Thermoelasticity,” Proc. 3rd Japan Symp. on BEM, Jascome, Tokyo, pp. 207–212.
You do not currently have access to this content.