The characteristic frequency and bandwidth of the random response to parametric excitation may be influenced by the excitation processes. It is demonstrated that the effective stiffness and damping properties can be expressed as conditional mean values for given displacement and energy levels, respectively. These properties are used to describe the response in terms of its probability density function and its spectral density function. An example demonstrates the accuracy in predicting change of frequency and damping of a parametrically excited oscillator, and another example extends the method to a self-excited oscillator with domains of negative damping.

1.
Gardiner, C. W., 1985, Handbook of Stochastic Methods, Springer-Verlag, Berlin.
2.
Lin, Y. K., and Cai, G. Q., 1995, Probabilistic Structural Dynamics, McGraw-Hill, New York.
3.
Caughey, T. K., 1971, “Nonlinear Theory of Random Vibrations,” Advances in Applied Mechanics, Vol. 11, C. S. Yih, ed., Academic Press, New York, pp. 209–253.
4.
Caughey
,
T. K.
,
1986
, “
On the Response of Non-linear Oscillators to Stochastic Excitation
,”
Probab. Eng. Mech.
,
1
, pp.
2
4
.
5.
Roberts
,
J. B.
,
1978
, “
The Energy Envelope of a Randomly Excited Non-linear Oscillator
,”
J. Sound Vib.
,
60
, pp.
177
185
.
6.
Roberts, J. B., 1983, “Energy Methods for Non-linear Systems With Non-white Excitation,” IUTAM Symposium on Random Vibrations and Reliability, K. Hennig, ed., Akademie-Verlag, Berlin, pp. 285–294.
7.
Wong
,
E.
, and
Zakai
,
M.
,
1965
, “
On the Relation Between Ordinary and Stochastic Differential Equations
,”
Int. J. Eng. Sci.
,
3
, pp.
213
229
.
8.
Zhu
,
W.
, and
Lin
,
Y. K.
,
1991
, “
Stochastic Averaging of Energy Envelope
,”
J. Eng. Mech.
,
117
, pp.
1890
1905
.
9.
Dimentberg
,
M. F.
,
1982
, “
An Exact Solution to a Certain Non-linear Random Vibration Problem
,”
Int. J. Non-Linear Mech.
,
17
, pp.
231
236
.
10.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1988
, “
Exact Stationary-Response Solution for Second-Order Nonlinear Systems Under Parametric and External White-Noise Excitations: Part II
,”
ASME J. Appl. Mech.
,
55
, pp.
702
705
.
11.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1988
, “
A New Approximate Solution Technique for Randomly Excited Non-linear Oscillators
,”
Int. J. Non-Linear Mech.
,
23
, pp.
409
420
.
12.
Cai
,
G. Q.
,
Lin
,
Y. K.
, and
Elishakoff
,
I.
,
1992
, “
A New Approximate Solution Technique for Randomly Excited Non-linear Oscillators—II
,”
Int. J. Non-Linear Mech.
,
27
, pp.
969
979
.
13.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1997
, “
Comparing Quasi-Conservative Averaging and Dissipation Energy Balancing Methods in Non-linear Random Vibration
,”
Int. J. Non-Linear Mech.
,
32
, pp.
121
126
.
14.
Stratonovich, R. L., 1963, Topics in the Theory of Random Noise, Vols. 1 and 2, Gordon and Breach, New York.
15.
Cai
,
G. Q.
, and
Lin
,
Y. K.
,
1997
, “
Response Spectral Densities of Strongly Nonlinear Systems Under Random Excitation
,”
Probabilistic Engineering Mechanics
,
12
, pp.
41
47
.
16.
Krenk
,
S.
, and
Roberts
,
J. B.
,
1999
, “
Local Similarity in Non-linear Random Vibration
,”
ASME J. Appl. Mech.
,
66
, pp.
225
235
.
17.
Krenk, S., 1999, “Energy and Spectral Density in Non-linear Random Response,” Stochastic Structural Dynamics, B. F. Spencer and E. A. Johnson, eds., Balkema, Rotterdam, pp. 43–51.
18.
Yong
,
Y.
, and
Lin
,
Y. K.
,
1987
, “
Exact Stationary-Response Solution for Second-Order Nonlinear Systems Under Parametric and External White-Noise Excitations
,”
ASME J. Appl. Mech.
,
54
, pp.
414
418
.
19.
Lin
,
Y. K.
, and
Cai
,
G. Q.
,
1988
, “
Equivalent Stochastic Systems
,”
ASME J. Appl. Mech.
,
55
, pp.
918
922
.
20.
Fogli
,
M.
,
Bresollette
,
P.
, and
Bernard
,
P.
,
1996
, “
The Dynamics of a Stochastic Oscillator With Impacts
,”
Eur. J. Mech. A/Solids
,
15
, pp.
213
241
.
21.
Ru¨dinger, F., and Krenk, S., 2001, “Stochastic Analysis of Self-Induced Vibrations,” submitted to Meccanica, for publication.
You do not currently have access to this content.