Low-strength and low-impedance materials pose significant challenges in the design of experiments to determine dynamic stress-strain responses. When these materials are tested with a conventional split Hopkinson pressure bar, the specimen will not deform homogeneously and the tests are not valid. To obtain valid data, the shape of the incident pulse and the specimen thickness must be designed such that the specimens are in dynamic equilibrium and deform homogeneously at constant strain rates. In addition, a sensitive transmission bar is required to detect the weak transmitted pulses. Experimental results show that homogeneous deformations at nearly constant strain rates can be achieved in materials with very low impedances, such as a silicone rubber and a polyurethane foam, with the experimental modifications presented in this study.

1.
Vallee
,
G. E.
, and
Shukla
,
A.
,
1996
, “
A Study of the Dynamic Behavior of Elastomeric Materials Using Finite Elements
,”
ASME J. Eng. Mater. Technol.
,
118
, pp.
503
508
.
2.
Clamroth
,
R.
,
1981
, “
Determination of Viscoelastic Properties by Dynamic Testing
,”
Polym. Test.
,
2
, pp.
263
286
.
3.
Harris
,
J. A.
,
1987
, “
Dynamic Testing Under Nonsinusoidal Conditions and the Consequences of Nonlinearity for Service Performance
,”
Rubber Chem. Technol.
,
60
, pp.
870
887
.
4.
Kolsky
,
H.
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. R. Soc. London, Ser. B
,
B62
, pp.
676
700
.
5.
Gray, G. T., 2000, “Classic Split-Hopkinson Pressure Bar Testing,” Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, Ohio, 8, pp. 462–476.
6.
Ross
,
C. A.
,
Jerome
,
D. M.
,
Tedesco
,
J. W.
, and
Hughes
,
M. L.
,
1996
, “
Moisture and Strain Rate Effects on Concrete Strength
,”
ACI Mater. J.
,
93
, pp.
293
300
.
7.
Chen
,
W.
, and
Ravichandran
,
G.
,
1996
, “
Static and Dynamic Compressive Behavior of Aluminum Nitride under Moderate Confinement
,”
J. Am. Ceram. Soc.
,
79
(
3
), pp.
579
584
.
8.
Chen
,
W.
, and
Ravichandran
,
G.
,
1997
, “
Dynamic Compressive Behavior of a Glass Ceramic Under Lateral Confinement
,”
J. Mech. Phys. Solids
,
45
, pp.
1303
1328
.
9.
Chen
,
W.
, and
Ravichandran
,
G.
,
2000
, “
Failure Mode Transition in Ceramics Under Dynamic Multiaxial Compression
,”
Int. J. Fract.
,
101
, pp.
141
159
.
10.
Walley
,
S. M.
,
Field
,
J. E.
,
Pope
,
P. H.
, and
Safford
,
N. A.
,
1989
, “
A Study of the Rapid Deformation Behavior of a Range of Polymers
,”
Philos. Trans. R. Soc. London, Ser. A
,
A328
, pp.
1
33
.
11.
Gamby
,
D.
, and
Chaoufi
,
J.
,
1991
, “
Asymptotic Analysis of Wave Propagation in a Finite Viscoplastic Bar
,”
Acta Mech.
,
87
, pp.
163
178
.
12.
Wang
,
L.
,
Labibes
,
K.
,
Azari
,
Z.
, and
Pluvinage
,
G.
,
1994
, “
Generalization of Split Hopkinson Bar Technique to Use Viscoelastic Bars
,”
Int. J. Impact Eng.
,
15
, pp.
669
686
.
13.
Zhao
,
H.
,
Gary
,
G.
, and
Klepaczko
,
J. R.
,
1997
, “
On the Use of a Viscoelastic Split Hopkinson Pressure Bar
,”
Int. J. Impact Eng.
,
19
, pp.
319
330
.
14.
Sawas
,
O.
,
Brar
,
N. S.
, and
Brockman
,
R. A.
,
1998
, “
Dynamic Characterization of Compliant Materials Using an All-Polymeric Split Hopkinson Bar
,”
Exp. Mech.
,
38
, pp.
204
210
.
15.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2001
, “
A Split Hopkinson Bar Technique to Determine Compressive Stress-Strain Data for Rock Materials
,”
Exp. Mech.
,
41
, pp.
40
46
.
16.
Gray, G. T., and Blumenthal, W. R., 2000, “Split-Hopkinson Pressure Bar Testing of Soft Materials,” Mechanical Testing and Evaluation, Metals Handbook, American Society for Metals, Materials Park, Ohio, 8, pp. 488–496.
17.
Chen
,
W.
,
Zhang
,
B.
, and
Forrestal
,
M. J.
,
1999
, “
A Split Hopkinson Bar Technique for Low-Impedance Materials
,”
Exp. Mech.
,
39
, pp.
81
85
.
18.
Chen
,
W.
,
Lu
,
F.
, and
Zhou
,
B.
,
2000
, “
A Quartz Crystal Embedded Split Hopkinson Bar for Soft Materials
,”
Exp. Mech.
,
40
, pp.
1
6
.
19.
Dioh
,
N. N.
,
Leevers
,
P. S.
, and
Williams
,
J. G.
,
1993
, “
Thickness Effects in Split Hopkinson Pressure Bar Tests
,”
Polymer
,
34
, pp.
4230
4234
.
20.
Gray
,
G. T.
, III
,
Blumenthal
,
W. R.
,
Trujillo
,
C. P.
, and
Carpenter
,
R. W.
, II
,
1997
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Adiprene L-100
,”
J. Phys. IV
,
7
, pp.
523
528
.
21.
Frantz, C. E., Follansbee, P. S., and Wright, W. J., 1984, “New Experimental Techniques with the Split Hopkinson Pressure Bar,” 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, I. Berman and J. W. Schroeder, eds., San Antonio, TX, June 17–21 ASME, New York.
22.
Follansbee, P. S., 1985, “The Hopkinson Bar,” Mechanical Testing, Metals Handbook, 9th Ed., American Society for Metals, Metals Park, OH, 8, pp. 198–217.
23.
Follansbee
,
P. S.
, and
Frantz
,
C.
,
1983
, “
Wave Propagation in the SHPB
,”
ASME J. Eng. Mater. Technol.
,
105
, pp.
61
66
.
24.
Duffy
,
J.
,
Campbell
,
J. D.
, and
Hawley
,
R. H.
,
1971
, “
On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum
,”
ASME J. Appl. Mech.
,
37
, pp.
83
91
.
25.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
, “
Pulse-Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
, pp.
93
106
.
26.
Lindholm
,
U. S.
,
1964
, “
Some Experiments With the Split Hopkinson Pressure Bar
,”
J. Mech. Phys. Solids
,
12
, pp.
317
335
.
27.
Chen
,
W.
, and
Zhang
,
X.
,
1997
, “
Dynamic Response of Epon 828/T-403 Under Multiaxial Loading at Various Temperatures
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
305
308
.
28.
Chen
,
W.
,
Subhash
,
G.
, and
Ravichandran
,
G.
,
1994
, “
Evaluation of Ceramic Specimen Geometries Used in Split Hopkinson Pressure Bar
,”
DYMAT J.
,
1
, pp.
193
210
.
29.
Ravichandran
,
G.
, and
Subhash
,
G.
,
1994
, “
Critical Appraisal of Limiting Strain Rates for Compression Testing of Ceramics in a Split Hopkinson Pressure Bar
,”
J. Am. Ceram. Soc.
,
77
, pp.
263
267
.
30.
Karnes
,
C. H.
, and
Ripperger
,
E. A.
,
1966
, “
Strain Rate Effects in Cold Worked High-Purity Aluminum
,”
J. Mech. Phys. Solids
,
14
, pp.
75
88
.
31.
Wasley
,
R. J.
,
Hoge
,
K. G.
, and
Cast
,
J. C.
,
1969
, “
Combined Strain Gauge-Quartz Crystal Instrumented Hopkinson Split Bar
,”
Rev. Sci. Instrum.
,
40
, pp.
889
894
.
32.
Togami
,
T. C.
,
Baker
,
W. E.
, and
Forrestal
,
M. J.
,
1996
, “
A Split Hopkinson Bar Technique to Evaluate the Performance of Accelerometers
,”
ASME J. Appl. Mech.
,
63
, pp.
353
356
.
33.
Wu
,
X. J.
, and
Gorham
,
D. A.
,
1997
, “
Stress Equilibrium in the Split Hopkinson Pressure Bar Test
,”
J. Phys. IV
,
7
, pp.
91
96
.
34.
Ravichandran, G., and Chen, W., 1991, “Dynamic Behavior of Brittle Materials Under Uniaxial Compression,” Experiments in Micromechanics of Fracture Resistant Materials, K. S. Kim ed., AMD-130, ASME, New York, pp. 85–90.
35.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
,
1991
, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
Proc. R. Soc. London, Ser. A
,
A435
, pp.
371
391
.
36.
Lewis, C. F., 1979, “Properties and Selection: Nonferrous Alloys and Pure Metals,” Metals Handbook, 9th Ed., 2, American Society for Metals, Materials Park, OH.
You do not currently have access to this content.