The effect of a flattening distortion on the electronic properties of a semiconducting carbon nanotube is investigated through first-principles calculations. As a function of the mechanical deformation, electronic bandgap is reduced leading to a semiconductor-metal transition. However, further deformation reopens the bandgap and induces a metal-semiconductor transition. The semiconductor–metal transitions take place as a result of curvature-induced hybridization effects, and this finding can be applied to develop novel nano electro mechanical systems.
1.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
2.
Iijima
, S.
, 1991
, “Helical Microtubules of Graphitic Carbon
,” Nature (London)
, 354
, pp. 56
–58
.3.
Treacy
, M. M. J.
, Ebbesen
, T. W.
, and Gibson
, J. M.
, 1996
, “Exceptionally High Yong’s Modulus Observed for Individual Carbon Nanotubes
,” Nature (London)
, 381
, pp. 678
–680
.4.
Falvo
, M. R.
, Clary
, G. J.
, Taylor
, R. M.
, Chi
, V.
, Brooks
, F. P.
, Washburn
, S.
, and Superfine
, R.
, 1997
, “Bending and Buckling of Carbon Nanotubes Under Large Strain
,” Nature (London)
, 389
, pp. 582
–584
.5.
Wong
, E. W.
, Sheehan
, P. E.
, and Lieber
, C. M.
, 1997
, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,” Science
, 277
, pp. 1971
–1974
.6.
Charlier
, J. C.
, and Issi
, J. P.
, 1998
, “Electronic Structure and Quantum Transport in Carbon Nanotubes
,” Appl. Phys. A: Mater. Sci. Process.
, 67
, pp. 79
–87
.7.
Hamada
, N.
, Sawada
, S.
, and Oshiyama
, A.
, 1992
, “New One-Dimensional Conductors: Graphitic Microtubules
,” Phys. Rev. Lett.
, 68
, pp. 1579
–1581
.8.
Heyd
, R.
, Charlier
, A.
, and McRae
, E.
, 1997
, “Uniaxial-Stress Effects on the Electronic Properties of Carbon Nanotubes
,” Phys. Rev. B
, 55
, pp. 6820
–6824
.9.
Lourie
, O.
, Cox
, D. M.
, and Wagner
, H. D.
, 1998
, “Buckling and Collapse of Embedded Carbon Nanotubes
,” Phys. Rev. Lett.
, 81
, pp. 1638
–1641
.10.
Yakobson
, B. I.
, and Smalley
, R. E.
, 1997
, “Fullerene Nanotubes: C 1,000,000 and Beyond
,” Am. Sci.
, 85
, pp. 324
–337
.11.
Thomas
, W. T.
, Zhou
, C. W.
, Alexseyev
, L.
, Kong
, J.
, Dai
, H. J.
, Lei
, L.
, Jayanthi
, C. S.
, Tang
, M. J.
, and Wu
, S. Y.
, 2000
, “Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,” Nature (London)
, 405
, pp. 769
–772
.12.
Rochefort
, A.
, Salahub
, D. R.
, and Avouris
, P.
, 1998
, “The Effect of Structural Distortions on the Electronic Structure of Carbon Nanotubes
,” Chem. Phys. Lett.
, 297
, pp. 45
–50
.13.
Iijima
, S.
, 1996
, “Structural Flexibility of Carbon Nanotubes
,” J. Chem. Phys.
, 104
, pp. 2089
–2092
.14.
Mazzoni
, M. S. C.
and Chacham
, H.
, 2000
, “Bandgap Closure of a Flattened Semiconductor Carbon Nanotubes: A First-Principle Study
,” Appl. Phys. Lett.
, 76
, pp. 1561
–1563
.15.
Payne
, M. C.
Teter
, M. P.
, Allan
, D. C.
, and Joannopoulos
, J. D.
, 1992
, “Iterative Minimization Techniques for ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients
,” Rev. Mod. Phys.
, 64
, pp. 1045
–1096
.16.
Srivestava
, D.
, Menon
, M.
, and Cho
, K. J.
, 1999
, “Nanoplasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression
,” Phys. Rev. Lett.
, 83
, pp. 2973
–2976
.17.
Peng
, S.
, and Cho
, K. J.
, 2000
, “Chemical Control of Nanotube Electronics
,” Nanotechnology
, 11
, pp. 57
–60
.Copyright © 2002
by ASME
You do not currently have access to this content.