The effect of a flattening distortion on the electronic properties of a semiconducting carbon nanotube is investigated through first-principles calculations. As a function of the mechanical deformation, electronic bandgap is reduced leading to a semiconductor-metal transition. However, further deformation reopens the bandgap and induces a metal-semiconductor transition. The semiconductor–metal transitions take place as a result of curvature-induced hybridization effects, and this finding can be applied to develop novel nano electro mechanical systems.

1.
Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 1998, Physical Properties of Carbon Nanotubes, Imperial College Press, London.
2.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
58
.
3.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Yong’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
,
381
, pp.
678
680
.
4.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
,
Chi
,
V.
,
Brooks
,
F. P.
,
Washburn
,
S.
, and
Superfine
,
R.
,
1997
, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
,
389
, pp.
582
584
.
5.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
, pp.
1971
1974
.
6.
Charlier
,
J. C.
, and
Issi
,
J. P.
,
1998
, “
Electronic Structure and Quantum Transport in Carbon Nanotubes
,”
Appl. Phys. A: Mater. Sci. Process.
,
67
, pp.
79
87
.
7.
Hamada
,
N.
,
Sawada
,
S.
, and
Oshiyama
,
A.
,
1992
, “
New One-Dimensional Conductors: Graphitic Microtubules
,”
Phys. Rev. Lett.
,
68
, pp.
1579
1581
.
8.
Heyd
,
R.
,
Charlier
,
A.
, and
McRae
,
E.
,
1997
, “
Uniaxial-Stress Effects on the Electronic Properties of Carbon Nanotubes
,”
Phys. Rev. B
,
55
, pp.
6820
6824
.
9.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
,
1998
, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
,
81
, pp.
1638
1641
.
10.
Yakobson
,
B. I.
, and
Smalley
,
R. E.
,
1997
, “
Fullerene Nanotubes: C 1,000,000 and Beyond
,”
Am. Sci.
,
85
, pp.
324
337
.
11.
Thomas
,
W. T.
,
Zhou
,
C. W.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H. J.
,
Lei
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M. J.
, and
Wu
,
S. Y.
,
2000
, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local-Probe Manipulation
,”
Nature (London)
,
405
, pp.
769
772
.
12.
Rochefort
,
A.
,
Salahub
,
D. R.
, and
Avouris
,
P.
,
1998
, “
The Effect of Structural Distortions on the Electronic Structure of Carbon Nanotubes
,”
Chem. Phys. Lett.
,
297
, pp.
45
50
.
13.
Iijima
,
S.
,
1996
, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
,
104
, pp.
2089
2092
.
14.
Mazzoni
,
M. S. C.
and
Chacham
,
H.
,
2000
, “
Bandgap Closure of a Flattened Semiconductor Carbon Nanotubes: A First-Principle Study
,”
Appl. Phys. Lett.
,
76
, pp.
1561
1563
.
15.
Payne
,
M. C.
Teter
,
M. P.
,
Allan
,
D. C.
, and
Joannopoulos
,
J. D.
,
1992
, “
Iterative Minimization Techniques for ab initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients
,”
Rev. Mod. Phys.
,
64
, pp.
1045
1096
.
16.
Srivestava
,
D.
,
Menon
,
M.
, and
Cho
,
K. J.
,
1999
, “
Nanoplasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression
,”
Phys. Rev. Lett.
,
83
, pp.
2973
2976
.
17.
Peng
,
S.
, and
Cho
,
K. J.
,
2000
, “
Chemical Control of Nanotube Electronics
,”
Nanotechnology
,
11
, pp.
57
60
.
You do not currently have access to this content.