This paper deals with the nonlinear dynamic buckling of laminated composite rectangular plates subjected to uniform time-dependent in-plane temperature-induced loading. The dynamic post-buckling deflection response is obtained and dynamic critical temperatures are estimated. The nonlinear governing equations of motion are solved analytically using fast Chebyshev series technique. The numerical results for CCCC, CCCS, CCSS, CSCS, CSSS and SSSS boundary conditions are presented.

1.
Bert
,
C. W.
, and
Birman
,
V.
,
1987
, “
Dynamic Stability of Shear Deformable Antisymmetric Angle-Ply Plates
,”
Int. J. Solids Struct.
,
23
, pp.
1053
1061
.
2.
Moorthy
,
J.
, and
Reddy
,
J. N.
,
1990
, “
Parametric Stability of Laminated Composite Plates With Transverse Shear Deformation
,”
Int. J. Solids Struct.
,
26
, pp.
801
811
.
3.
Ganapathi
,
M.
,
Vardan
,
T. K.
, and
Balamurugan
,
V.
,
1994
, “
Dynamic Instability of Laminated Composite Curved Panels Using Finite Element Method
,”
Comput. Struct.
,
53
, pp.
335
342
.
4.
Liao
,
C.-L.
, and
Cheng
,
C.-R.
,
1994
, “
Dynamic Stability of Stiffened Laminated Composite Plates and Shells Subjected to In-Plane Pulsating Forces
,”
Int. J. Numer. Methods Eng.
,
37
, pp.
4167
4183
.
5.
Locke
,
J.
,
1990
, “
Nonlinear Random Response of Angle-Ply Laminates With Static and Thermal Preloads
,”
AIAA J.
,
29
(
9
), pp.
1480
1487
.
6.
Abbas
,
J. F.
,
Ibrahim
,
R. A.
, and
Gibson
,
R. F.
,
1993
, “
Nonlinear Flutter of Orthotropic Composite Panel Under Aerodynamic Heating
,”
AIAA J.
,
31
(
8
), pp.
1478
1488
.
7.
Lee
,
D. M.
, and
Lee
,
I.
,
1997
, “
Vibration Behaviors of Thermally Postbuckled Anisotropic Plates Using First-Order Shear Deformation Theory
,”
Comput. Struct.
,
71
, pp.
617
626
.
8.
Liaw
,
D. G.
,
1997
, “
Nonlinear Supersonic Flutter of Laminated Composite Plates Under Thermal Loads
,”
Comput. Struct.
,
65
(
5
), pp.
733
746
.
9.
Ganapathi
,
M.
, and
Touratier
,
M.
,
1999
, “
Dynamic Instability of Laminates Subjected to Temperature Field
,”
J. Eng. Mech., ASCE
,
124
(
10
), pp.
1166
1168
.
10.
Tylikowski
,
A.
, and
Hetnarski
,
R. B.
,
1996
, “
Thermally Induced Instability of Laminated Beams and Plates
,”
ASME J. Appl. Mech.
,
63
, pp.
884
890
.
11.
Librescu
,
L.
, and
Souza
,
M. A.
,
2000
, “
Nonlinear Dynamics of Stiffened Flat Panels Under Thermomechanical Loads
,”
J. Aerospace Engg., ASCE.
,
13
(
3
), pp.
78
84
.
12.
Fox, L., and Parker, I. B., 1968, Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London.
13.
Houbolt
,
J. C.
,
1950
, “
A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft
,”
J. Aerosp. Sci.
,
17
, pp.
540
550
.
14.
Shukla
,
K. K.
, and
Nath
,
Y.
,
2000
, “
Non-linear Analysis of Moderately Thick Laminated Rectangular Plates
,”
J. Eng. Mech., ASCE
,
126
(
8
), pp.
831
838
.
15.
Budiansky, B., and Roth, R. S., 1962, “Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells,” NASA, TND 1510, pp. 597–606.
16.
Stephens
,
W. B.
, and
Fulton
,
R. E.
,
1967
, “
Axisymmetric Static and Dynamic Buckling of Spherical Caps due to Centrally Distributed Pressure
,”
AIAA J.
,
8
, pp.
2120
2126
.
17.
Jain
,
R. K.
, and
Nath
,
Y.
,
1987
, “
Dynamic Buckling of Orthotropic Caps Supported by Elastic Media
,”
AIAA J.
,
25
(
4
), pp.
630
633
.
18.
Jones, R. M., 1998, Mechanics of Composite Materials, Taylor & Francis, Philadelphia.
19.
Whitney
,
J. M.
,
1973
, “
Shear Correction Factors for Orthotropic Laminates Under Static Loads
,”
ASME J. Appl. Mech.
,
40
, pp.
302
304
.
20.
Yang
,
P. C.
,
Norris
,
C. H.
, and
Stavsky
,
Y.
,
1966
, “
Elastic Wave Propagation in Heterogeneous Plates
,”
Int. J. Solids Struct.
,
2
, pp.
665
684
.
21.
Nath
,
Y.
, and
Sandeep
,
K.
,
1995
, “
Chebyshev Series Solution to Non-Linear Boundary Value Problems in Rectangular Domain
,”
Comput. Methods Appl. Mech. Eng.
,
125
, pp.
41
52
.
22.
Noor
,
A. K.
,
1975
, “
Stability of Multilayered Composite Plates
,”
Fibre Sci. Technol.
,
8
, pp.
81
89
.
23.
Owen
,
D. R. J.
, and
Li
,
Z. H.
,
1987
, “
A Refined Analysis of Laminated Plates by Finite Element Displacement Methods—II, Vibration and Stability
,”
Comput. Struct.
,
26
(
6
), pp.
915
923
.
You do not currently have access to this content.