We present an efficient and accurate continuum-mechanics approach to predict the elastic fields in multilayered semiconductors due to buried quantum dots (QDs). Our approach is based on a novel Green’s function solution in anisotropic and linearly elastic multilayers, derived within the framework of generalized Stroh formalism and Fourier transforms, in conjunction with the Betti’s reciprocal theorem. By using this approach, the induced elastic fields due to QDs with general misfit strains are expressed as a volume integral over the QDs domains. For QDs with uniform misfit strains, the volume integral involved is reduced to a surface integral over the QDs boundaries. Further, for QDs that can be modeled as point sources, the induced elastic fields are then derived as a sum of the point-force Green’s functions. In the last case, the solution of the QD-induced elastic field is analytical, involving no numerical integration, except for the evaluation of the Green’s functions. As numerical examples, we have studied a multilayered semiconductor system of QDs made of alternating GaAs-spacer and InAs-wetting layers on a GaAs substrate, plus a freshly deposited InAs-wetting layer on the top. The effects of vertical and horizontal arrays of QDs and of thickness of the top wetting layer on the QD-induced elastic fields are examined and some new features are observed that may be of interest to the designers of semiconductor QD superlattices.

1.
Bimberg, D., Grundmann, M., and Ledentsov, N. N., 1998, Quantum Dot Heterostructures, John Wiley and Sons, New York.
2.
Brunner
,
K.
,
2002
, “
Si/Ge Nanostructures
,”
Rep. Prog. Phys.
,
65
, pp.
27
72
.
3.
Freund
,
L. B.
, and
Johnson
,
H. T.
,
2001
, “
Influence of Strain on Functional Characteristics of Nanoelectronic Devices
,”
J. Mech. Phys. Solids
,
49
, pp.
1925
1935
.
4.
Xie
,
Q.
,
Madhukar
,
A.
,
Chen
,
P.
, and
Kobayashi
,
N. P.
,
1995
, “
Vertically Self-Organized InAs Quantum Box Islands on GaAs(100)
,”
Phys. Rev. Lett.
,
75
, pp.
2542
2545
.
5.
Tersoff
,
J.
,
Teichert
,
C.
, and
Lagally
,
M. G.
,
1996
, “
Self-Organization in Growth of Quantum Dot Supperlattices
,”
Phys. Rev. Lett.
,
76
, pp.
1675
1678
.
6.
Ishikawa
,
H.
,
Shoji
,
H.
,
Nakata
,
Y.
,
Mukai
,
K.
,
Sugawara
,
M.
,
Egawa
,
M.
,
Otsuka
,
N.
,
Sujiyama
,
Y.
,
Futatsugi
,
T.
, and
Yokoyama
,
N.
,
1998
, “
Self-Organized Quantum Dots and Lasers
,”
J. Vac. Sci. Technol. A
,
16
, pp.
794
800
.
7.
Springholz
,
G.
,
Pinczolits
,
M.
,
Holy
,
V.
,
Zerlauth
,
S.
,
Vavra
,
I.
, and
Bauer
,
G.
,
2001
, “
Vertical and Lateral Ordering in Self-Organized Quantum Dot Supperlattices
,”
Physica E (Amsterdam)
,
9
, pp.
149
163
.
8.
Le Ru
,
E. C.
,
Bennett
,
A. J.
,
Roberts
,
C.
, and
Murray
,
R.
,
2002
, “
Strain and Electronic Interactions in InAs/GaAs Quantum Dot Multilayers for 1300 nm Emission
,”
J. Appl. Phys.
,
91
, pp.
1365
1370
.
9.
Grundmann
,
M.
,
Stier
,
O.
, and
Bimberg
,
D.
,
1995
, “
InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure
,”
Phys. Rev. B
,
52
, pp.
969
11
.
10.
Benabbas
,
T.
,
Francois
,
P.
,
Androussi
,
Y.
, and
Lefebvre
,
A.
,
1996
, “
Stress Relaxation in Highly Strained InAs/GaAs Structures as Studied by Finite Element Analysis and Transmission Electron Microscopy
,”
J. Appl. Phys.
,
80
, pp.
2763
2767
.
11.
Johnson
,
H. T.
,
Freund
,
L. B.
,
Akyuz
,
C. D.
, and
Zaslavsky
,
A.
,
1998
, “
Finite Element Analysis of Strain Effects on Electronic and Transport Properties in Quantum Dots and Wires
,”
J. Appl. Phys.
,
84
, pp.
3714
3725
.
12.
Kret
,
S.
,
Benabbas
,
T.
,
Delamarre
,
C.
,
Androussi
,
Y.
,
Dubon
,
A.
,
Laval
,
J. Y.
, and
Lefebvre
,
A.
,
1999
, “
High Resolution Electron Microscope Analysis of Lattice Distortions and in Segregation in Highly Strained In0.35Ga0.65As Coherent Islands Grown on GaAs(001)
,”
J. Appl. Phys.
,
86
, pp.
1988
1993
.
13.
Jogai
,
B.
,
2001
, “
Three-Dimensional Strain Field Calculations in Multiple InN/AIN Wuutzite Quantum Dots
,”
J. Appl. Phys.
,
90
, pp.
699
704
.
14.
Johnson
,
H. T.
, and
Freund
,
L. B.
,
2001
, “
The Influence of Strain on Confined Electronic States in Semiconductor Quantum Structures
,”
Int. J. Solids Struct.
,
38
, pp.
1045
1062
.
15.
Daruka
,
I.
,
Barabasi
,
A. L.
,
Zhou
,
S. J.
,
Germann
,
T. C.
,
Lomdahl
,
P. S.
, and
Bishop
,
A. R.
,
1999
, “
Molecular-Dynamics Investigation of the Surface Stress Distribution in a Ge/Si Quantum Dot Superlattice
,”
Phys. Rev. B
,
60
, pp.
R2150–R2153
R2150–R2153
.
16.
Kikuchi
,
Y.
,
Sugii
,
H.
, and
Shintani
,
K.
,
2001
, “
Strain Profiles in Pyramidal Quantum Dots by Means of Atomistic Simulation
,”
J. Appl. Phys.
,
89
, pp.
1191
1196
.
17.
Makeev
,
M. A.
, and
Maduhukar
,
A.
,
2001
, “
Simulations of Atomic Level Stresses in Systems of Buried Ge/Si Islands
,”
Phys. Rev. Lett.
,
86
, pp.
5542
5545
.
18.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half Plane
,”
ASME J. Appl. Mech.
,
66
, pp.
315
322
.
19.
Faux
,
D. A.
, and
Pearson
,
G. S.
,
2000
, “
Green’s Tensors for Anisotropic Elasticity: Application to Quantum Dots
,”
Phys. Rev. B
,
62
, pp.
R4798–R4801
R4798–R4801
.
20.
Davies
,
J. H.
,
1998
, “
Elastic and Piezoelcetric Fields around a Buried Quantum Dot: A Simple Picture
,”
J. Appl. Phys.
,
84
, pp.
1358
1365
.
21.
Davies
,
J. H.
,
1999
, “
Quantum Dots Induced by Strain from Buried and Surface Stressors
,”
Appl. Phys. Lett.
,
75
, pp.
4142
4144
.
22.
Andreev
,
A. D.
,
Downes
,
J. R.
,
Faux
,
D. A.
, and
O’Reilly
,
E. P.
,
1999
, “
Strain Distributions in Quantum Dots of Arbitrary Shape
,”
J. Appl. Phys.
,
86
, pp.
297
305
.
23.
Pearson
,
G. S.
, and
Faux
,
D. A.
,
2000
, “
Analytical Solutions for Strain in Pyramidal Quantum Dots
,”
J. Appl. Phys.
,
88
, pp.
730
736
.
24.
Pan
,
E.
, and
Yang
,
B.
,
2001
, “
Elastostatic Fields in an Anisotropic Substrate due to a Buried Quantum Dot
,”
J. Appl. Phys.
,
90
, pp.
6190
6196
.
25.
Yang
,
B.
, and
Pan
,
E.
,
2001
, “
Efficient Evaluation of Three-Dimensional Green’s Functions for Anisotropic Elastostatic Multilayered Composites
,”
Eng. Anal. Boundary Elem.
,
26
, pp.
355
366
.
26.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Boston.
27.
Tsai, S. W., and Hahn, H. T., 1980, Introduction to Composite Materials, Technomic Publishing, Westport, CT.
28.
Pan
,
E.
,
1991
, “
Dislocation in an Infinite Poroelastic Medium
,”
Acta Mech.
,
87
, pp.
105
115
.
29.
Romanov
,
A. E.
,
Beltz
,
G. E.
,
Fischer
,
W. T.
,
Petroff
,
P. M.
, and
Speck
,
J. S.
,
2001
, “
Elastic Fields of Quantum Dots in Subsurface Layers
,”
J. Appl. Phys.
,
89
, pp.
4523
4531
.
30.
Pan
,
E.
, and
Yuan
,
F. G.
,
2000
, “
Three-Dimensional Green’s Functions in Anisotropic Bimaterials
,”
Int. J. Solids Struct.
,
37
, pp.
5329
5351
.
31.
Pan
,
E.
,
Yang
,
B.
,
Cai
,
X.
, and
Yuan
,
F. G.
,
2001
, “
Stress Analyses Around Holes in Composite Laminates Using Boundary Element Method
,”
Eng. Anal. Boundary Elem.
,
25
, pp.
31
40
.
32.
Yang
,
B.
,
2002
, “
Examination of Free-Edge Crack Nucleation Around an Open Hole in Composite Laminates
,”
Int. J. Fract.
,
115
, pp.
173
191
.
33.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
, pp.
625
646
.
34.
Stroh
,
A. N.
,
1962
, “
Steady State Problems in Anisotropic Elasticity
,”
J. Math. Phys.
,
41
, pp.
77
103
.
35.
Ting, T. C. T., 1996, Anisotropic Elasticity, Oxford University Press, Oxford, UK.
36.
Yang
,
B.
, and
Pan
,
E.
,
2001
, “
Three-Dimensional Green’s Functions in Anisotropic Trimaterials
,”
Int. J. Solids Struct.
,
39
, pp.
2235
2255
.
37.
Tonon
,
F.
,
Pan
,
E.
, and
Amadei
,
B.
,
2001
, “
Green’s Functions and Boundary Element Formulation for 3D Anisotropic Media
,”
Comput. Struct.
,
79
, pp.
469
482
.
38.
Holy
,
V.
,
Springholz
,
G.
,
Pinezolits
,
M.
, and
Bauer
,
G.
,
1999
, “
Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices
,”
Phys. Rev. Lett.
,
83
, pp.
356
359
.
39.
Harrison, P., 2000, Quantum Wells, Wires and Dots: Theoretical and Computational Physics, John Wiley and Sons, New York.
You do not currently have access to this content.