In this study, the forced vibration of cylindrical helical rods subjected to impulsive loads is theoretically investigated in the Laplace domain. The free vibration is then taken into account as a special case of forced vibration. The governing equations for naturally twisted and curved space rods obtained using Timoshenko beam theory are rewritten for cylindrical helical rods. The material of the rod is assumed to be homogeneous, linear elastic, and isotropic. The axial and shear deformations are also taken into account in the formulation. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate exactly the dynamic stiffness matrix of the problem. The desired accuracy is obtained by taking only a few elements. The solutions obtained are transformed to the real space using the Durbin’s numerical inverse Laplace transform method. The free and forced vibrations of cylindrical helical rods are analyzed through various example. The results obtained in this study are found to be in a good agreement with those available in the literature.

1.
Massoud
,
M. F.
,
1965
, “
Vectorial Derivation of the Equations for Small Vibrations of Twisted Curved Beams
,”
ASME J. Appl. Mech.
,
32
, pp.
439
440
.
2.
Wittrick
,
W. H.
,
1966
, “
On Elastic Wave Propagation in Helical Spring
,”
Int. J. Mech. Sci.
,
8
, pp.
25
47
.
3.
Kiral
,
E.
, and
Ertepinar
,
A.
, 1974, “Studies on Elastic Rods Subject to Diverse External Agencies—Part I: Derivation of Governing Equations,” METU J. Pure Appl. Sci., 7(1), pp. 23–40.
4.
Kiral
,
E.
, and
Ertepinar
,
A.
, 1974, “Studies on Elastic Rods Subject to Diverse External Agencies—Part III: Vibrational Analysis of Space Rods,” METU J. Pure Appl. Sci., 7(1), pp. 55–69.
5.
Mottershead
,
J. E.
,
1980
, “
Finite Elements for Dynamical Analysis of Helical Rods
,”
Int. J. Mech. Sci.
,
22
, pp.
267
283
.
6.
Pearson
,
D.
,
1982
, “
The Transfer Matrix Method for the Vibration of Compressed Helical Springs
,”
Int. J. Mech. Sci.
,
24
, pp.
163
171
.
7.
Pearson
,
D.
, and
Wittrick
,
W. H.
,
1986
, “
An Exact Solution for the Vibration of Helical Spring Using a Bernoulli-Euler Model
,”
Int. J. Mech. Sci.
,
28
, pp.
83
96
.
8.
Nagaya
,
K.
,
Takeda
,
S.
, and
Nakata
,
Y.
,
1986
, “
Free Vibrations of Coil Springs of Arbitrary Shape
,”
Int. J. Numer. Methods Eng.
,
23
, pp.
1081
1099
.
9.
Lin
,
Y.
, and
Pisano
,
A. P.
,
1987
, “
General Dynamic Equations of Helical Springs With Static Solution and Experimental Verification
,”
ASME J. Appl. Mech.
,
54
, pp.
910
916
.
10.
Lin
,
Y.
, and
Pisano
,
A. P.
,
1988
, “
The Differential Geometry of the General Helix as Applied to Mechanical Spring
,”
ASME J. Appl. Mech.
,
55
, pp.
831
835
.
11.
Tabarrok
,
B.
,
Sinclair
,
A. N.
,
Farshad
,
M.
, and
Yi
,
H.
,
1988
, “
On the Dynamics of Spatially Curved and Twisted Rods: A Finite Element Formulation
,”
J. Sound Vib.
,
123
(
2
), pp.
315
326
.
12.
Haktanir
,
V.
,
1995
, “
The Complementary Functions Method for the Element Stiffness Matrix of Arbitrary Spatial Bars of Helicoidal Axes
,”
Int. J. Numer. Methods Eng.
,
38
, pp.
1031
1056
.
13.
Yildirim
,
V.
,
1996
, “
Investigation of Parameters Affecting Free Vibration Frequency of Helical Spring
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
99
114
.
14.
Yildirim
,
V.
,
1999
, “
An Efficient Numerical Method for Predicting the Natural Frequencies of Cylindrical Helical Springs
,”
Int. J. Mech. Sci.
,
41
, pp.
919
939
.
15.
Lee
,
J.
, and
Thompson
,
D. J.
,
2001
, “
Dynamic Stiffness Formulation, Free Vibration and Wave Motion of Helical Springs
,”
J. Sound Vib.
,
239
(
2
), pp.
297
320
.
16.
Jiang
,
W.
,
Jones
,
W. K.
,
Wang
,
T. L.
, and
Wu
,
K. H.
,
1991
, “
Free Vibration of Helical Springs
,”
Trans. ASME
,
58
, pp.
222
228
.
17.
Sinha
,
S. K.
, and
Costello
,
G. A.
,
1978
, “
The Numerical Solution of the Dynamic Response of Helical Springs
,”
Int. J. Numer. Methods Eng.
,
12
, pp.
949
961
.
18.
Berdichevsky
,
V. L.
, and
Sutyrin
,
V. G.
,
1984
, “
Problem of an Equivalent Rod in Nonlinear Theory of Springs
,”
Prikl. Mat. Mekh.
,
47
(
2
), pp.
197
205
.
19.
Berdichevsky
,
V. L.
, and
Starosel’skii
,
L. A.
,
1983
, “
On the Theory of Curvilinear Timoshenko-Type Rods
,”
Prikl. Mat. Mekh.
,
47
(
6
), pp.
809
817
.
20.
Cesnik
,
C. E. S.
,
Hodges
,
D. H.
, and
Sutyrin
,
V. G.
,
1996
, “
Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects
,”
AIAA J.
,
34
(
9
), pp.
1913
1920
.
21.
Borri
,
M.
,
Ghiringhelli
,
G. L.
, and
Merlini
,
T.
,
1992
, “
Linear Analysis of Naturally Curved and Twisted Anisotropic Beams
,”
Composites Eng.
,
2
(
5–7
), pp.
433
456
.
22.
Yu, W., Hodges, D. H., Volovoi, V. V., and Cesnik, C. E. S., 2000, “Timoshenko-Like Modelling of Initially curved and Twisted Composite Beams With Oblique Cross Section,” Proceedings of the 41st Structures, Structural Dynamics and Materials Conference, AIAA Paper No. 2000-1405.
23.
Durbin
,
F.
,
1974
, “
Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method
,”
Comput. J.
,
17
, pp.
371
376
.
24.
Narayanan, G. V., 1979, “Numerical Operational Methods in Structural Dynamics,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
25.
Yerli
,
H. Y.
,
Temel
,
B.
, and
Kiral
,
E.
,
1998
, “
Transient Infinite Elements for 2D Soil-Structure Interaction Analysis
,”
J. Geotech. Eng.
,
124
(
10
), pp.
976
988
.
26.
Sokolnikoff, I. S., and Redheffer, R. M., 1958, Mathematics of Physics and Modern Engineering, McGraw-Hill, Tokyo.
27.
Chapra, S. C., and Canale, R. P., 1998, Numerical Methods for Engineers, 3rd Ed., McGraw-Hill, New York.
28.
ANSYS Swanson Analysis System, Inc., 201 Johnson Road, Houston, PA 15342–1300.
You do not currently have access to this content.