The aeroelastic stability of a thin, flexible disk rotating in an enclosed compressible fluid is investigated analytically through a discretization of the field equations of a rotating Kirchhoff plate coupled to the acoustic oscillations of the surrounding fluid. The discretization procedure exploits Green’s theorem and exposes two different gyroscopic effects underpinning the coupled system dynamics: One describes the gyroscopic coupling between the disk and acoustic oscillations, and another arises from the disk rotation. The discretized dynamical system is cast in the compact form of a classical gyroscopic system and acoustic and disk mode coupling rules are derived. For the undamped system, coupled structure-acoustic traveling waves can destabilize through mode coalescence leading to flutter instability. A detailed investigation of the effects of dissipation arising from acoustic and disk damping predicts previously unknown instability mechanisms for this system. The results are expected to be relevant for the design of high speed, low vibration, low-noise hard disk drives, and optical data storage systems.

1.
D’Angelo
,
C.
, and
Mote
,
C. D.
, Jr.
,
1993
, “
Aerodynamically Excited Vibration and Flutter of a Thin Disk Rotating at Supercritical Speed
,”
J. Sound Vib.
,
168
(
1
), pp.
15
30
.
2.
D’Angelo
,
C.
, and
Mote
,
C. D.
, Jr.
,
1993
, “
Natural Frequencies of a Thin Disk, Clamped by Thick Collars With Friction at the Contacting Surfaces, Spinning at High Rotating Speed
,”
J. Sound Vib.
,
168
(
1
), pp.
1
14
.
3.
Renshaw
,
A. A.
,
D’Angelo
,
C.
, and
Mote
,
C. D.
, Jr.
,
1994
, “
Aeroelastically Excited Vibration of a Rotating Disk
,”
J. Sound Vib.
,
177
(
5
), pp.
577
590
.
4.
Hansen
,
M. H.
,
Raman
,
A.
, and
Mote
,
C. D.
, Jr.
,
2001
, “
Estimation of Nonconservative Aerodynamic Pressure Leading to Flutter of Spinning Disks
,”
J. Fluids Struct.
,
15
, pp.
39
57
.
5.
Yasuda
,
K.
,
Torii
,
T.
, and
Shimizu
,
T.
,
1992
, “
Self-Excited Oscillations of a Circular Disk Rotating in Air
,”
JSME Int. J., Ser. III
,
35
, pp.
347
352
.
6.
Kim
,
B. C.
,
Raman
,
A.
, and
Mote
,
C. D.
, Jr.
,
2000
, “
Prediction of Aeroelastic Flutter in a Hard Disk Drive
,”
J. Sound Vib.
,
238
(
2
), pp.
309
325
.
7.
Hansen, M. H., 1999, “Aeroelasticity and Dynamics of Spinning Disks,” Ph.D. thesis, Department of Solid Mechanics, Technical University of Denmark.
8.
Huang
,
F. Y.
, and
Mote
,
C. D.
, Jr.
,
1995
, “
On the Instability Mechanisms of a Disk Rotating Close to a Rigid Surface
,”
ASME J. Appl. Mech.
,
62
, pp.
764
771
.
9.
Huang
,
F. Y.
, and
Mote
,
C. D.
, Jr.
,
1996
, “
Mathematical Analysis of Stability of a Spinning Disk Under Rotating, Arbitrarily Large Damping Forces
,”
ASME J. Vibr. Acoust.
,
118
, pp.
657
662
.
10.
Naganathan
,
G.
,
Ramadhayani
,
S.
, and
Bajaj
,
A. K.
,
2003
, “
Numerical Simulations of Flutter Instability of a Flexible Disk Rotating Close to a Rigid Wall
,”
J. Vib. Control
,
9
(
1
), pp.
95
118
.
11.
Renshaw
,
A. A.
,
1998
, “
Critical Speed for Floppy Disks
,”
ASME J. Appl. Mech.
,
65
, pp.
116
120
.
12.
Hosaka
,
H.
, and
Crandall
,
S. H.
,
1992
, “
Self-Excited Vibrations of a Flexible Disk Rotating on an Air Film Above a Flat Surface
,”
Acta Mech.
,
3
, pp.
115
127
.
13.
Love, A. E., 1944, Treatise on the Mathematical Theory of Elasticity, Dover, London.
14.
Dowell
,
E. H.
,
Gorman
,
G. F.
, and
Smith
,
D. A.
,
1977
, “
Acoustoelasticity: General Theory, Acoustic Natural Modes and Forced Response to Sinusoidal Excitation, Including Comparisons With Experiment
,”
J. Sound Vib.
,
52
(
4
), pp.
519
542
.
15.
Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 2000, Fundamentals of Acoustics, Fourth Ed., John Wiley and Sons, New York, Chap. 9.
16.
Fahy, F., 1985, Sound and Structural Vibration, Academic Press, San Diego, CA, Chap. 6.
17.
Dowell, E. H., 1975, Aeroelasticity of Plates and Shells, Noordhoff International Publishing, Leyden, Chap. 4.
18.
Vogel
,
S. M.
, and
Skinner
,
D. W.
,
1965
, “
Natural Frequencies of Transversely Vibrating Uniform Annular Plates
,”
ASME J. Appl. Mech.
,
32
, pp.
926
931
.
19.
Bokil
,
V. B.
, and
Shirahatti
,
U. S.
,
1994
, “
A Technique for the Modal Analysis of Sound-Structure Interaction Problems
,”
J. Sound Vib.
,
173
(
1
), pp.
23
41
.
20.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
(
10
), pp.
1337
1342
.
21.
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H., 2000, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia.
22.
Jha
,
R. K.
, and
Parker
,
R. G.
,
2000
, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
,
122
, pp.
290
294
.
23.
Renshaw
,
A. A.
, and
Mote
,
C. D.
, Jr.
,
1992
, “
Absence of One Nodal Diameter Critical Speed Modes in an Axisymmetric Rotating Disk
,”
ASME J. Appl. Mech.
,
59
, pp.
687
688
.
24.
Merkin, D. R., 1997, Introduction to the Theory of Stability, Springer-Verlag New York, Chap. 6.
25.
Iooss, G., and Joseph, D. D., 1980, Elementary Stability and Bifurcation Theory, Second Ed., Springer-Verlag New York, Chap. VII.
26.
Dowell
,
E. H.
,
1966
, “
Flutter of Infinitely Long Plates and Shells. Part I: Plate
,”
AIAA J.
,
4
(
8
), pp.
1370
1377
.
27.
Epstein
,
R. J.
,
Srinivasan
,
R.
, and
Dowell
,
E. H.
,
1995
, “
Flutter of an Infinitely Long Panel in a Duct
,”
AIAA J.
,
33
(
1
), pp.
109
115
.
You do not currently have access to this content.