Abstract

We study dynamics of a mass, moving on a straight line, and impacting against the rigid wall through a deformable body, that we model as a straight rod of negligible mass. The chosen constitutive model of the viscoelastic body comprises fractional derivatives of stress and strain and the restrictions on the coefficients that follow from Clausius Duhem inequality. We show that the dynamics of the problem is governed by a single differential equation of real order. The obtained equation was solved numerically. The comparison is made to the solution obtained by the Laplace transform and Post’s inversion formula. The predictions of the model concerning the duration of the impact, maximal values of the impacting force and deformation as well as the restitution coefficient are determined for several values of system parameters.

1.
Brogliato, B., 1999, Nonsmooth Dynamics, Springer, London.
2.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.,
42
, pp.
440
445
.
3.
Butcher
,
E. A.
, and
Segalman
,
D. J.
,
2000
, “
Characterizing Damping and Restitution in Compliant Impact via Modified K-V and Higher Order Linear Viscoelastic Models
,”
ASME J. Appl. Mech.,
67
, pp.
831
834
.
4.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, San Diego, CA.
5.
Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, Fractional Integrals and Derivatives, Gordon and Breach, Amsterdam.
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behaviour
,”
J. Rheol.,
30
, pp.
133
155
.
7.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.,
195
, pp.
103
115
.
8.
Fenander
,
A˚.
,
1998
, “
A Fractional Derivative Railpad Model Included in a Railway Track Model
,”
J. Sound Vib.,
212
, pp.
889
903
.
9.
Baclic
,
B. S.
, and
Atanackovic
,
T. M.
,
2000
, “
Stability and Creep of a Fractional Derivative Order Viscoelastic Rod
,”
Bull. T. CXXI Serb. Acad. Sci. Arts
,(
25
), pp.
115
131
.
10.
Suarez
,
L. E.
, and
Shokooh
,
A.
,
1997
, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives
,”
ASME J. Appl. Mech.,
64
, pp.
629
635
.
11.
Enelund
,
M.
, and
Lesieutre
,
G. A.
,
1999
, “
Time Domain Modeling of Damping Using Anelastic Displacement Fields and Fractional Calculus
,”
Int. J. Solids Struct.,
36
, pp.
4447
4472
.
12.
Haupt
,
P.
,
Lion
,
A.
, and
Backhaus
,
E.
,
2000
, “
On the Dynamic Behaviour of Polymers Under Finite Strains: Constitutive Modeling and Identification of Parameters
,”
Int. J. Solids Struct.,
37
, pp.
3633
3646
.
13.
Bagley
,
R. L.
,
1989
, “
Power Law and Fractional Calculus Model of Viscoelasticity
,”
AIAA J.,
27
, pp.
1412
1417
.
14.
Atanackovic, T. M., 2001, “A Modified Zener Model of a Viscoelastic Body,” Continuum Mech. Thermodyn., in press.
15.
Palade
,
L. I.
,
Verney
,
V.
, and
Attane
,
P.
,
1996
, “
A Modified Fractional Model to Describe the Entire Viscoelastic Behaviour of Polybutadienes From Flow to Glassy Regime
,”
Rheol. Acta,
35
, pp.
265
273
.
16.
Mikusin´ski, J., 1959, Operational Calculus, Pergamon Press, New York.
17.
Post
,
E. L.
,
1930
, “
Generalized Differentiation
,”
Trans. Am. Math. Soc.,
32
, pp.
723
781
.
18.
Podlubny, I., 1999, Fractional Differential Equations, Academic Press, San Diego, CA.
19.
Kilchevski, N. A., 1976, Dynamic Contact of Solid Bodies, Naukova Dumka, Kiev.
You do not currently have access to this content.