The propagation of surface acoustic waves in a rotating anisotropic crystal is studied. The crystal is monoclinic and cut along a plane containing the normal to the symmetry plane; this normal is also the axis of rotation. The secular equation is obtained explicitly using the “method of the polarization vector,” and it shows that the wave is dispersive and decelerates with increasing rotation rate. The case of orthorhombic symmetry is also treated. The surface wave speed is computed for 12 monoclinic and 8 rhombic crystals, and for a large range of the rotation rate/wave frequency ratio.
Issue Section:
Technical Papers
1.
Reindl
, L.
, Scholl
, G.
, Ostertag
, T.
, Scherr
, H.
, Wolff
, U.
, and Schmidt
, F.
, 1998
, “Theory and Application of Passive SWA Radio Transponders as Sensors
,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control
, 45
, pp. 1281
–1292
.2.
Pohl
, A.
, Ostermayer
, G.
, Reindl
, L.
, and Seifert
, F.
, 1997
, “Monitoring the Tire Pressure at Cars Using Passive SWA Sensors
,” IEEE Ultrasonics Symposium
, 1
, pp. 471
–474
.3.
Pohl
, A.
, Steindl
, R.
, and Reindl
, L.
, 1999
, “The ‘Intelligent Tire’ Utilizing Passive SWA Sensors—Measurement of Tire Friction
,” IEEE Trans. Instrum. Meas.
, 48
, pp. 1041
–1046
.4.
Clarke
, N. S.
, and Burdess
, J. S.
, 1994
, “A Rotation Rate Sensor Based Upon a Rayleigh Resonator
,” ASME J. Appl. Mech.
, 61
, pp. 139
–143
.5.
Clarke
, N. S.
, and Burdess
, J. S.
, 1994
, “Rayleigh Waves on a Rotating Surface
,” ASME J. Appl. Mech.
, 61
, pp. 724
–726
.6.
Fang
, H.
, Yang
, J.
, and Jiang
, Q.
, 2000
, “Rotation Perturbed Surface Acoustic Waves Propagating in Piezoelectric Crystals
,” Int. J. Solids Struct.
, 37
, pp. 4933
–4947
.7.
Grigor’evskii˘
, V. I.
, Gulyaev
, Yu. V.
, and Kozlov
, A. I.
, 2000
, “Acoustic Waves in a Rotating Elastic Medium
,” Acoust. Phys.
, 46
, pp. 236
–238
.8.
Collet, B., 2003, “Gyroscopic Effect on Surface Acoustic Waves in Anisotropic Solid Media,” Proceedings of the 5th World Congress on Ultrasonics, pp. 991–995.
9.
Jose
, K. A.
, Suh
, W. D.
, Xavier
, P. B.
, Varadan
, V. K.
, and Varadan
, V. V.
, 2002
, “Surface Acoustic Wave MEMS Gyroscope
,” Wave Motion
, 36
, pp. 367
–381
.10.
Jahangir
, E.
, and Howe
, R. M.
, 1993
, “Time-Optimal Attitude Control Scheme for a Spinning Missile
,” J. Guid. Control Dyn.
, 16
, pp. 346
–353
.11.
Schoenberg
, M.
, and Censor
, D.
, 1973
, “Elastic Waves in Rotating Media
,” Q. Appl. Math.
, 31
, pp. 115
–125
.12.
Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford University Press, New York.
13.
Chadwick
, P.
, and Wilson
, N. J.
, 1992
, “The Behavior of Elastic Surface Waves Polarized in a Plane of Material Symmetry, II. Monoclinic Media
,” Proc. R. Soc. London, Ser. A
, 438
, pp. 207
–223
.14.
Destrade
, M.
, 2001
, “The Explicit Secular Equation for Surface Acoustic Waves in Monoclinic Elastic Crystals
,” J. Acoust. Soc. Am.
, 109
, pp. 1398
–1402
.15.
Stroh
, A. N.
, 1962
, “Steady State Problems in Anisotropic Elasticity
,” J. Math. Phys.
, 41
, pp. 77
–103
.16.
Ingebrigsten
, K. A.
, and Tonning
, A.
, 1969
, “Elastic Surface Waves in Crystal
,” Phys. Rev.
, 184
, pp. 942
–951
.17.
Ting
, T. C. T.
, 2002
, “Explicit Secular Equations for Surface Waves in Monoclinic Materials With the Symmetry Plane at x1=0, x2=0 or x3=0,
” Proc. R. Soc. London, Ser. A
, A458
, pp. 1017
–1031
.18.
Currie
, P. K.
, 1979
, “The Secular Equation for Rayleigh Waves on Elastic Crystals
,” Q. J. Mech. Appl. Math.
, 32
, pp. 163
–173
.19.
Taziev
, R. M.
, 1989
, “Dispersion Relation for Acoustic Waves in an Anisotropic Elastic Half-Space
,” Sov. Phys. Acoust.
, 35
, pp. 535
–538
.20.
Ting
, T. C. T.
, 2004
, “The Polarization Vector and Secular Equation for Surface Waves in an Anisotropic Elastic Half-Space
,” Int. J. Solids Struct.
, 41
, pp. 2065
–2083
.21.
Destrade
, M.
, 2004
, “Surface Waves in Rotating Rhombic Crystals
,” Proc. R. Soc. London, Ser. A
, 460
, pp. 653
–665
.22.
Destrade
, M.
, 2004
, “Explicit Secular Equation for Scholte Waves Over a Monoclinic Crystal
,” J. Sound Vib., to appear.23.
Barnett
, D. M.
, and Lothe
, J.
, 1973
, “Synthesis of the Sextic and the Integral Formalism for Dislocations, Green’s Function, and Surface Wave (Rayleigh Wave) Solutions in Anisotropic Elastic Solids
,” Phys. Norv.
, 7
, pp. 13
–19
.24.
Shutilov, V., 1988, Fundamental Physics of Ultrasound, Gordon and Breach, New York.
25.
Destrade
, M.
, 2003
, “Rayleigh Waves in Symmetry Planes of Crystals: Explicit Secular Equations and Some Explicit Wave Speeds
,” Mech. Mater.
, 35
, 931
–939
.26.
Mozhaev, V. G., 1995, “Some New Ideas in the Theory of Surface Acoustic Waves in Anisotropic Media,” IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solids, D. F. Parker and A. H. England, eds., Kluwer, Dordrecht, The Netherlands, pp. 455–462.
27.
Furs
, A. N.
, 1997
, “Covariant Form of the Dispersion Equation for Surface Acoustic Waves in Symmetry Planes of Crystals
,” Crystallogr. Rep.
, 4
, pp. 196
–201
.Copyright © 2004
by ASME
You do not currently have access to this content.