The interaction integral method provides a unified framework for evaluating fracture parameters (e.g., stress intensity factors and T stress) in functionally graded materials. The method is based on a conservation integral involving auxiliary fields. In fracture of nonhomogeneous materials, the use of auxiliary fields developed for homogeneous materials results in violation of one of the basic relations of mechanics, i.e., equilibrium, compatibility or constitutive, which naturally leads to three independent formulations: “nonequilibrium,” “incompatibility,” and “constant-constitutive-tensor.” Each formulation leads to a consistent form of the interaction integral in the sense that extra terms are added to compensate for the difference in response between homogeneous and nonhomogeneous materials. The extra terms play a key role in ensuring path independence of the interaction integral. This paper presents a critical comparison of the three consistent formulations and addresses their advantages and drawbacks. Such comparison is made both from a theoretical point of view and also by means of numerical examples. The numerical implementation is based on finite elements which account for the spatial gradation of material properties at the element level (graded elements).

1.
Knowles
,
J. K.
, and
Sternberg
,
E.
, 1972, “
On a Class of Conservation Laws in Linearized and Finite Elastostatics
,”
Arch. Ration. Mech. Anal.
0003-9527,
44
(
2
), pp.
187
211
.
2.
Budiansky
,
B.
, and
Rice
,
J. R.
, 1973, “
Conservation Laws and Energy-Release Rates
,”
ASME J. Appl. Mech.
0021-8936,
40
(
1
), pp.
201
203
.
3.
Chang
,
J. H.
, and
Chien
,
A. J.
, 2002, “
Evaluation of M-Integral for Anisotropic Elastic Media With Multiple Defects
,”
Int. J. Fract.
0376-9429,
114
(
3
), pp.
267
289
.
4.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
, 1985,
Advanced Fracture Mechanics
,
Oxford University Press
, New York.
5.
Yau
,
J. F.
,
Wang
,
S. S.
, and
Corten
,
H. T.
, 1980, “
A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity
,”
ASME J. Appl. Mech.
0021-8936,
47
(
2
), pp.
335
341
.
6.
Wang
,
S. S.
,
Corten
,
H. T.
, and
Yau
,
J. F.
, 1980, “
Mixed-Mode Crack Analysis of Rectilinear Anisotropic Solids Using Conservation Laws of Elasticity
,”
Int. J. Fract.
0376-9429,
16
(
3
), pp.
247
259
.
7.
Yau
,
J. F.
, 1979, “
Mixed-Mode Fracture Analysis Using a Conservation Integral
,” PhD thesis, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign.
8.
Dolbow
,
J.
, and
Gosz
,
M.
, 2002, “
On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
39
(
9
), pp.
2557
2574
.
9.
Rao
,
B. N.
, and
Rahman
,
S.
, 2003, “
Mesh-Free Analysis of Cracks in Isotropic Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
70
(
1
), pp.
1
27
.
10.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
An Accurate Scheme for Mixed-Mode Fracture Analysis of Functionally Graded Materials Using the Interaction Integral and Micromechanics Models
,”
Int. J. Numer. Methods Eng.
0029-5981,
58
(
10
), pp.
1457
1497
.
11.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
T-Stress, Mixed-Mode Stress Intensity Factors, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
11–12
), pp.
1463
1494
.
12.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2004, “
T-Stress in Orthotropic Functionally Graded Materials: Lekhnitskii and Stroh Formalisms
,”
Int. J. Fract.
0376-9429,
126
(
4
), pp.
345
389
.
13.
Eischen
,
J. W.
, 1987, “
Fracture of Non-Homogeneous Materials
,”
Int. J. Fract.
0376-9429,
34
(
1
), pp.
3
22
.
14.
Gu
,
P.
,
Dao
,
M.
, and
Asaro
,
R. J.
, 1997, “
A Simplified Method for Calculating the Crack-Tip Field of Functionally Graded Materials Using the Domain Integral
,”
ASME J. Appl. Mech.
0021-8936,
34
(
1
), pp.
1
17
.
15.
Anlas
,
G.
,
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Numerical Calculation of Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Fract.
0376-9429,
104
(
2
), pp.
131
143
.
16.
Marur
,
P. R.
, and
Tippur
,
H. V.
, 2000, “
Numerical Analysis of Crack-Tip Fields in Functionally Graded Materials With a Crack Normal to the Elastic Gradient
,”
Int. J. Solids Struct.
0020-7683,
37
(
38
), pp.
5353
5370
.
17.
Bao
,
G.
, and
Cai
,
H.
, 1997, “
Delamination Cracking in Functionally Graded Coating/Metal Substrate Systems
,”
Acta Mech.
0001-5970,
45
(
3
), pp.
1055
1066
.
18.
Bao
,
G.
, and
Wang
,
L.
, 1995, “
Multiple Cracking in Functionally Graded Ceramic/Metal Coatings
,”
Int. J. Solids Struct.
0020-7683,
32
(
19
), pp.
2853
2871
.
19.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Finite Element Evaluation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
(
8
), pp.
1903
1935
.
20.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
(
14–16
), pp.
1557
1586
.
21.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2003, “
Mixed-Mode J-Integral Formulation and Implementation Using Graded Finite Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,”
Mech. Mater.
0167-6636,
35
(
1–2
), pp.
107
128
.
22.
Williams
,
M. L.
, 1957, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
0021-8936,
24
(
1
), pp.
109
114
.
23.
Becker
,
T. L.
, Jr.
,
Cannon
,
R. M.
, and
Ritchie
,
R. O.
, 2001, “
Finite Crack Kinking and T-Stresses in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
38
(
32–33
), pp.
5545
5563
.
24.
Erdogan
,
F.
, 1995, “
Fracture Mechanics of Functionally Graded Materials
,”
Composites Eng.
0961-9526,
5
(
7
), pp.
753
770
.
25.
Noda
,
N.
, 1999, “
Thermal Stresses in Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
22
(
4–5
), pp.
477
512
.
26.
Paulino
,
G. H.
,
Jin
,
Z. H.
, and
Dodds
,
R. H.
, Jr.
, 2003, “
Failure of Functionally Graded Materials
.”
Comprehensive Structural Integrity
,
B.
Karihaloo
and
W. G.
Knauss
, eds.,
Elsevier Science
, New York, Vol.
2
, Chap. 13, pp.
607
644
.
27.
Delale
,
F.
, and
Erdogan
,
F.
, 1983, “
The Crack Problem for a Nonhomogeneous Plane
,”
ASME J. Appl. Mech.
0021-8936,
50
(
3
), pp.
609
614
.
28.
Erdogan
,
F
, and
Wu
,
B. H.
, 1997, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
0021-8936,
64
(
3
), pp.
449
456
.
29.
Chan
,
Y.-S.
,
Paulino
,
G. H.
, and
Fannjiang
,
A. C.
, 2001, “
The Crack Problem for Nonhomogeneous Materials Under Antiplane Shear Loading—A Displacement Based Formulation
,”
Int. J. Solids Struct.
0020-7683,
38
(
17
), pp.
2989
3005
.
30.
Delale
,
F.
, and
Erdogan
,
F.
, 1988, “
On the Mechanical Modeling of an Interfacial Region in Bonded Half-Planes
,”
ASME J. Appl. Mech.
0021-8936,
55
(
2
), pp.
317
324
.
31.
Gu
,
P.
, and
Asaro
,
R. J.
, 1997, “
Cracks in Functionally Graded Materials
,”
Int. J. Solids Struct.
0020-7683,
34
(
1
), pp.
1
17
.
32.
Shbeeb
,
N. I.
,
Binienda
,
W. K.
, and
Kreider
,
K. L.
, 1999, “
Analysis of the Driving Forces for Multiple Cracks in an Infinite Nonhomogeneous Plate, Part I: Theoretical Analysis
,”
ASME J. Appl. Mech.
0021-8936,
66
(
2
), pp.
492
500
.
33.
Shbeeb
,
N. I.
,
Binienda
,
W. K.
, and
Kreider
,
K. L.
, 1999, “
Analysis of the Driving Forces for Multiple Cracks in an Infinite Nonhomogeneous Plate, Part II: Numerical Solutions
,”
ASME J. Appl. Mech.
0021-8936,
66
(
2
), pp.
501
506
.
34.
Honein
,
T.
, and
Herrmann
,
G.
, 1997, “
Conservation Laws in Nonhomogeneous Plane Elastostatics
,”
J. Mech. Phys. Solids
0022-5096,
45
(
5
), pp.
789
805
.
35.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1997, “
Mode I Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Eng. Sci.
0020-7225,
35
(
9
), pp.
869
883
.
36.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1999, “
The Mixed Mode Crack Problem in an Inhomogeneous Orthotropic Medium
,”
Int. J. Fract.
0376-9429,
98
(
3–4
), pp.
243
261
.
37.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1965, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
Int. J. Fract. Mech.
0020-7268,
1
(
2
), pp.
189
203
.
38.
Eftis
,
J.
,
Subramonian
,
N.
, and
Liebowitz
,
H.
, 1977, “
Crack Border Atress and Displacement Equations Revisited
,”
Eng. Fract. Mech.
0013-7944,
9
(
1
), pp.
189
210
.
39.
Ting
,
C. T. C.
, 1996,
Anisotropic Elasticity: Theory and Applications
.
Oxford University Press
, Oxford.
40.
Lekhnitskii
,
S. G.
, 1968,
Anisotropic Plates
,
Gordon and Breach Science
, New York.
41.
Michell
,
J. H.
, 1900, “
Elementary Distributions of Plane Stress
,”
Proc. London Math. Soc.
,
32
, pp.
35
61
.
42.
Rice
,
J. R.
, 1968, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentration By Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
(
2
), pp.
379
386
.
43.
Kim
,
J.-H.
, 2003, “
Mixed-Mode Crack Propagation in Functionally Graded Materials
,” PhD thesis, University of Illinois at Urbana-Champaign.
44.
Paulino
,
G. H.
, and
Kim
,
J.-H.
, 2004, “
A New Approach to Compute T-Stress in Functionally Graded Materials Using the Interaction Integral Method
,”
Eng. Fract. Mech.
0013-7944,
71
(
13–14
), pp.
1907
1950
.
45.
Kim
,
J.-H.
, and
Paulino
,
G. H.
, 2002, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
69
(
4
), pp.
502
514
.
46.
Santare
,
M. H.
, and
Lambros
,
J.
, 2000, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
67
(
4
), pp.
819
822
.
47.
Konda
,
N.
, and
Erdogan
,
F.
, 1994, “
The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
0013-7944,
47
(
4
), pp.
533
545
.
48.
Paulino
,
G. H.
, and
Dong
,
Z.
(unpublished).
49.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2001,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
, New York.
50.
Wawrzynek
,
P. A.
, 1987, “
Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach
,” MS thesis, Cornell University.
51.
Wawrzynek
,
P. A.
, and
Ingraffea
,
A. R.
, 1991, “
Discrete Modeling of Crack Propagation: Theoretical Aspects and Implementation Issues in Two and Three Dimensions
,” Report 91-5,
School of Civil Engineering and Environmental Engineering, Cornell University
.
You do not currently have access to this content.