In this paper, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. A few examples using this approach to model the viscoelastic response of nanotube and nanoplatelet polymer nanocomposite are presented. This method can also be adapted for modeling other behaviors of polymer nanocomposites, including thermal and electrical properties. It is potentially useful in the prediction of behaviors of other types of nanocomposites, such as metal and ceramic matrix nanocomposites.

1.
Schadler
,
L. S.
, 2003, “
Polymer-Based and Polymer-Filled Nanocomposites
,”
Nanocomposite Science and Technology
,
P. M.
Ajayan
,
L. S.
Schadler
, and
P. V.
Braun
, eds.,
Wiley
, New York, p.
71
153
.
2.
Ramanathan
,
T.
,
Liu
,
H.
, and
Brinson
,
L. C.
, 2005, “
Functionalized SWNT Polymer Nanocomposites for Dramatic Property Improvement
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
(
17
), pp.
2269
2279
.
3.
Ramanathan
,
T.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Liu
,
H.
,
Shen
,
H.
,
Nguyen
,
S. T.
, and
Brinson
,
L. C.
, 2006, “
An Investigation of Particle Size and Dispersion and Their Influence on Graphite/PMMA Nanocomposites Properties
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266 (submitted).
4.
Kasimatis
,
K. G.
, and
Torkelson
,
J. M.
, 2004, “
Well-Exfoliated, Kinetically Stable Polypropylene-Clay Nanocomposites Made by Solid-State Shear Pulverization
,” Abstracts of Papers of the American Chemical Society, 228 U429-U429 96-PMSE Part 2.
5.
Curran
,
S. A.
,
Coleman
,
J. N.
,
Dalton
,
A. B.
,
Davey
,
A. P.
,
Drury
,
A.
, and
McCarthy
,
B.
, 1998, “
A Composite From Poly(m-phenylenevinylene-co-2, 5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
10
(
14
), pp.
1091
1093
.
6.
Muzny
,
C. D.
,
Butler
,
B. D.
,
Hanley
,
H. J. M.
,
Tsvetkov
,
F.
, and
Peiffer
,
D. G.
, 1996, “
Clay Platelet Dispersion in a Polymer Matrix
,”
Mater. Lett.
0167-577X,
28
(
4-6
), pp.
379
384
.
7.
Mack
,
J. J.
,
Viculus
,
L. M.
,
Ali
,
A.
,
Luoh
,
R.
,
Yang
,
G.
,
Hahn
,
H. T.
,
Ko
,
F. K.
, and
Kaner
,
R. B.
, 2005, “
Graphite Nanoplatelet Reinforcement of Electrospun Polyacrylonitrile Nanofibers
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
17
(
1
), pp.
77
80
.
8.
Sandler
,
J. K. W.
,
Shaffer
,
M. S. P.
,
Prasse
,
T.
,
Bauhofer
,
W. K.
, and
Windle
,
A. H.
, 1999, “
Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties
,”
Polymer
0032-3861,
40
(
21
), pp.
5967
5971
.
9.
Sandler
,
J. K. W.
,
Kirk
,
J. E.
,
Kinloch
,
I. A.
,
Shaffer
,
M. S. P.
, and
Windle
,
A. H.
, 2003, “
Ultra-Low Electrical Percolation Threshold in Carbon-Nanotube-Epoxy Composites
,”
Polymer
0032-3861,
44
(
19
), pp.
5893
5899
.
10.
Sandler
,
J. K. W.
, 2004, “
A Comparative Study of Melt Spun Polyamide-12 Fibres Reinforced With Carbon Nanotubes and Nanofibres
,”
Polymer
0032-3861,
45
(
6
), pp.
2001
2015
.
11.
Coleman
,
J. N.
,
Cadek
,
M.
,
Blake
,
R.
,
Nicolosi
,
V.
,
Ryan
,
K. P.
,
Belton
,
C.
,
Fonseca
,
A.
,
Nagy
,
J. B.
,
Gun'ko
,
Y. K.
, and
Blau
,
W. J.
, 2004, “
High-Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase
,”
Adv. Funct. Mater.
1616-301X,
14
(
8
), pp.
791
798
.
12.
Dalton
,
A. B.
,
Collins
,
S.
,
Munoz
,
E.
,
Razal
,
J. M.
,
Ebron
,
V. H.
,
Ferraris
,
J. P.
,
Coleman
,
J. N.
,
Kim
,
B. G.
, and
Boughman
,
R. H.
, 2003, “
Super-Tough Carbon-Nanotube Fibres: These Extraordinary Composite Fibres Can Be Woven Into Electronic Textiles
,”
Nature (London)
0028-0836,
423
(
6941
), p.
703
.
13.
Cadek
,
M.
,
Coleman
,
J. N.
,
Barron
,
V.
,
Hedicke
,
K.
, and
Blau
,
W. J.
, 2002, “
Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystalline and Amorphous Polymer Composites
,”
Appl. Phys. Lett.
0003-6951,
81
(
27
), pp.
5123
5125
.
14.
Kilbride
,
B. E.
,
Coleman
,
J. N.
,
Fraysse
,
J.
,
Fournet
,
P.
,
Cadek
,
M.
,
Drury
,
A.
,
Hutzler
,
S.
,
Roth
,
S.
, and
Blau
,
W. J.
, 2002, “
Experimental Observation of Scaling Laws for Alternating Current and Direct Current Conductivity in Polymer-Carbon Nanotube Composite Thin Films
,”
J. Appl. Phys.
0021-8979,
92
(
7
), pp.
4024
4030
.
15.
Biercuk
,
M. J.
,
Llaguno
,
M. C.
,
Radosavljevic
,
M.
,
Hyun
,
J. K.
,
Johnson
,
A. T.
, and
Fischer
,
J. E.
, 2002, “
Carbon Nanotube Composites for Thermal Management
,”
Appl. Phys. Lett.
0003-6951,
80
(
15
), pp.
2767
2769
.
16.
Wei
,
C. Y.
,
Shrivastava
,
D.
, and
Choi
,
K.
, 2002, “
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
,”
Nano Lett.
1530-6984,
2
(
6
), pp.
647
650
.
17.
Lim
,
S. K.
, 2002, “
Preparation and Interaction Characteristics of Organically Modified Montmorillonite Nanocomposite With Miscible Polymer Blend of Poly(Ethylene Oxide) and Poly(methyl Methacrylate)
,”
Chem. Mater.
0897-4756,
14
(
5
), pp.
1989
1994
.
18.
Hyun
,
Y. H.
,
Lim
,
S. T.
,
Choi
,
H. J.
, and
Jhon
,
M. S.
, 2001, “
Rheology of Poly(ethylene Oxide)/Organoclay Nanocomposites
,”
Macromolecules
0024-9297,
34
(
23
), pp.
8084
8093
.
19.
Messersmith
,
P. B.
, and
Glannelis
,
E. P.
, 1995, “
Synthesis and Barrier Properties of Poly(epsilon-Caprolactone)-Layered Silicate Nanocomposites
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
33
(
7
), pp.
1047
1057
.
20.
Messersmith
,
P. B.
, and
Giannelis
,
E. P.
, 1994, “
Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites
,”
Chem. Mater.
0897-4756,
6
(
10
), pp.
1719
1725
.
21.
Coleman
,
J. N.
,
Curran
,
S.
,
Dalton
,
A. B.
,
Davey
,
A. P.
,
McCarthy
,
B.
,
Blau
,
W.
, and
Barklie
,
R. C.
, 1998, “
Percolation-Dominated Conductivity in a Conjugated-Polymer-Carbon-Nanotube Composite
,”
Phys. Rev. B
0163-1829,
58
(
12
), pp.
R7492
R7495
.
22.
Putz
,
K. W.
,
Mitchell
,
C. A.
,
Krishnamoorti
,
R.
, and
Green
,
P. F.
, 2004, “
Elastic Modulus of Single-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Nanocomposites
,”
J. Polym. Sci., Part A: Polym. Chem.
0887-624X,
42
(
12
), pp.
2286
2293
.
23.
Fisher
,
F. T.
,
Eitan
,
A.
,
Andrews
,
R.
,
Schadler
,
L. S.
, and
Brinson
,
L. C.
, 2004, “
Spectral Response and Effective Viscoelastic Properties of MWNT-Reinforced Polycarbonate
,”
Adv. Compos. Lett.
0963-6935,
13
(
2
), pp.
105
111
.
24.
Cox
,
H. L.
, 1952, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
0508-3443,
3
, pp.
72
78
.
25.
Wagner
,
H. D.
,
Lourie
,
O.
,
Feldman
,
Y.
, and
Tenne
,
R.
, 1998, “
Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix
,”
Appl. Phys. Lett.
0003-6951,
72
(
2
), pp.
188
190
.
26.
Cooper
,
C. A.
,
Cohen
,
S. R.
,
Barber
,
A. H.
, and
Wagner
,
H. D.
, 2002, “
Detachment of Nanotubes From a Polymer Matrix
,”
Appl. Phys. Lett.
0003-6951,
81
(
20
), pp.
3873
3875
.
27.
Frankland
,
S. J. V.
,
Caglar
,
A.
,
Brenner
,
D. W.
, and
Griebel
,
M.
, 2002, “
Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces
,”
J. Phys. Chem. B
1089-5647,
106
(
12
), pp.
3046
3048
.
28.
Frankland
,
S. J. V.
, and
Harik
,
V. M.
, 2003, “
Analysis of Carbon Nanotube Pull-Out From a Polymer Matrix
,”
Surf. Sci.
0039-6028,
525
(
1–3
), pp.
L103
L108
.
29.
Liao
,
K.
, and
Li
,
S.
, 2001, “
Interfacial Characteristics of a Carbon Nanotube-Polystyrene Composite System
,”
Appl. Phys. Lett.
0003-6951,
79
(
25
), pp.
4225
4227
.
30.
Wong
,
M.
,
Paramsothy
,
M.
,
Xu
,
X. J.
,
Ren
,
Y.
,
Li
,
S.
, and
Liao
,
K.
, 2003, “
Physical Interactions at Carbon Nanotube-Polymer Interface
,”
Polymer
0032-3861,
44
(
25
), pp.
7757
7764
.
31.
Wagner
,
H. D.
, 2002, “
Nanotube-Polymer Adhesion: A Mechanics Approach
,”
Chem. Phys. Lett.
0009-2614,
361
(
1–2
), pp.
57
61
.
32.
Schadler
,
L. S.
,
Giannaris
,
S. C.
, and
Ajayan
,
P. M.
, 1998, “
Load Transfer in Carbon Nanotube Epoxy Composites
,”
Appl. Phys. Lett.
0003-6951,
73
(
26
), pp.
3842
3844
.
33.
Ajayan
,
P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
, 2000, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
12
(
10
), pp.
750
753
.
34.
Thomason
,
J. L.
, 1995, “
The Interface Region in Glass Fibre-Reinforced Epoxy Resin Composites: 3. Characterization of Fibre Surface Coatings and the Interphase
,”
Composites
0010-4361,
26
, pp.
487
498
.
35.
Mai
,
K.
,
Mader
,
E.
, and
NMuhle
,
M.
, 1998, “
Interphase Characterization in Composites With New Non-Destructive Methods
,”
Composites, Part A
1359-835X,
29A
, pp.
1111
1119
.
36.
Starr
,
F. W.
,
Schroder
,
T. B.
, and
Glotzer
,
S. C.
, 2002, “
Molecular Dynamics Simulation of a Polymer Melt With a Nanoscopic Particle
,”
Macromolecules
0024-9297,
35
(
11
),
4481
4492
.
37.
Starr
,
F. W.
,
Schroder
,
T. B.
, and
Glotzer
,
S. C.
, 2001, “
Effects of a Nanoscopic Filler on the Structure and Dynamics of a Simulated Polymer Melt and the Relationship to Ultrathin Films
,”
Phys. Rev. E
1063-651X,
64
(
2
), p.
021802
.
38.
Smith
,
G. D.
,
Bedrov
,
D.
,
Li
,
L. W.
, and
Byutner
,
O.
, 2002, “
A Molecular Dynamics Simulation Study of the Viscoelastic Properties of Polymer Nanocomposites
,”
J. Chem. Phys.
0021-9606,
117
(
20
), pp.
9478
9489
.
39.
Brune
,
D. A.
, and
Bicerano
,
J.
, 2002, “
Micromechanics of Nanocomposites: Comparison of Tensile and Compressive Elastic Moduli, and Prediction of Effects of Incomplete Exfoliation and Imperfect Alignment on Modulus
,”
Polymer
0032-3861,
43
(
2
), pp.
369
387
.
40.
Sheng
,
N.
,
Boyce
,
M. C.
,
Parks
,
D. M.
,
Rutledge
,
G. C.
,
Abes
,
J. I.
, and
Cohen
,
R. E.
, 2004, “
Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle
,”
Polymer
0032-3861,
45
(
2
), pp.
487
506
.
41.
Frogley
,
M. D.
,
Ravich
,
D.
, and
Wagner
,
H. D.
, 2003. “
Mechanical Properties of Carbon Nanoparticle-Reinforced Elastomers
,”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1647
1654
.
42.
Shia
,
D.
,
Hui
,
C. Y.
,
Burnside
,
S. D.
, and
Giannelis
,
E. P.
, 1998, “
An Interface Model for the Prediction of Young’s Modulus of Layered Silicate-Elastomer Nanocomposites
,”
Polym. Compos.
0272-8397,
19
(
5
), pp.
608
617
.
43.
Fisher
,
F. T.
,
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites-1: Modulus Predictions Using Effective Nanotube Properties
,”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1689
1703
.
44.
Luo
,
J. J.
, and
Daniel
,
I. M.
, 2003, “
Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nanocomposites
,”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1607
1616
.
45.
Liu
,
Y. J.
, and
Chen
,
X. L.
, 2003, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
0167-6636,
35
(
1-2
), pp.
69
81
.
46.
Chen
,
X. L.
, and
Liu
,
Y. J.
, 2004, “
Square Representative Volume Elements for Evaluating the Effective Material Properties of Carbon Nanotube-Based Composites
,”
Comput. Mater. Sci.
0927-0256,
29
(
1
), pp.
1
11
.
47.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2003, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites
,”
J. Nanosci. Nanotechnol.
1533-4880,
3
(
5
), pp.
423
430
.
48.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Modeling of Elastic Buckling of Carbon Nanotubes by Molecular Structural Mechanics Approach
,”
Mech. Mater.
0167-6636,
36
(
11
), pp.
1047
1055
.
49.
Miller
,
R. E.
, and
Tadmor
,
E. B.
, 2002, “
The Quasicontinuum Method: Overview, Applications and Current Directions
,”
J. Comput.-Aided Mater. Des.
0928-1045,
9
(
3
), pp.
203
239
.
50.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
51.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
241
(
1226
), pp.
376
396
.
52.
Eshelby
,
J. D.
, 1961, “
Elastic Inclusions and Inhomogeneities
,”
Progress in Solid Mechanics
, Vol.
2
,
I. N.
Sneddon
and
R.
Hills
, eds.,
North-Holland, Amsterdam
, pp.
89
140
.
53.
Benveniste
,
Y.
, 1987, “
A New Approach to the Application of Mori-Tanaka Theory in Composite-Materials
,”
Mech. Mater.
0167-6636,
6
(
2
), pp.
147
157
.
54.
Tandon
,
G. P.
, and
Weng
,
G. J.
, 1986, “
Average Stress in the Matrix and Effective Moduli of Randomly Orientated Composites
,”
Compos. Sci. Technol.
0266-3538,
27
, pp.
111
132
.
55.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solid: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
(
5
), pp.
357
372
.
56.
Hashin
,
Z.
, 1965, “
Viscoelastic Behavior of Heterogeneous Media
,”
ASME J. Appl. Mech.
0021-8936,
32
(
3
), pp.
630
636
.
57.
Wang
,
Y. M.
, and
Weng
,
G. J.
, 1992, “
The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites
,”
ASME J. Appl. Mech.
0021-8936,
59
(
3
), pp.
510
518
.
58.
Mura
,
T.
, 1982,
Micromechanics of Defects in Solids
,
Kluwer
, Dordrecht.
59.
Yasmin
,
A.
,
Abot
,
J. L.
, and
Daniel
,
I. M.
, 2003, “
Processing of Clay/Epoxy Nanocomposites by Shear Mixing
,”
Scr. Mater.
1359-6462,
49
(
1
), pp.
81
86.
60.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
, 2003, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites-II: Modeling via Numerical Approximation of the Dilute Strain Concentration Tensor
.”
Compos. Sci. Technol.
0266-3538,
63
(
11
), pp.
1705
1722
.
61.
Park
,
C. H.
,
Kim
,
J. H.
,
Ree
,
M.
,
Sohn
,
B. H.
,
Jung
,
J. C.
, and
Zin
,
W. C.
, 2004, “
Thickness and Composition Dependence of the Glass Transition Temperature in Thin Random Copolymer Films
.”
Polymer
0032-3861,
45
(
13
), pp.
4507
4513.
62.
Ellison
,
C. J.
, and
Torkelson
,
J. M.
, 2003, “
The Distribution of Glass-Transition Temperatures in Nanoscopically Confined Glass Formers
,”
Nat. Mater.
1476-1122,
2
(
10
), pp.
695
700
.
63.
Ding
,
W.
,
Eitan
,
A.
,
Fisher
,
F. T.
,
Chen
,
X.
,
Dikin
,
D. A.
,
Andrews
,
R.
,
Brinson
,
L. C.
,
Schadler
,
L. S.
, and
Ruoff
,
R. S.
, 2003, “
Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites
,”
Nano Lett.
1530-6984,
3
(
11
), pp.
1593
1597
.
64.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
, 2001, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
3
10
.
65.
Sarvestani
,
A. S.
, 2003, “
On the Overall Elastic Moduli of Composites With Spherical Coated Fillers
,”
Int. J. Solids Struct.
0020-7683,
40
(
26
), pp.
7553
7566
.
66.
Bradshaw
,
R. D.
, and
Brinson
,
L. C.
, 1997, “
A Sign Control Method for Fitting and Interconverting Material Functions for Linearly Viscoelastic Materials
,”
Mech. Time-Depend. Mater.
1385-2000,
1
, pp.
85
108
.
You do not currently have access to this content.