Abstract

Accurate steady and unsteady numerical solutions of the full two-dimensional (2D) governing equations for the Nusselt problem (film condensation of quiescent saturated vapor on a vertical wall) are presented and related to known results. The problem, solved accurately up to film Reynolds number of 60 (Reδ60), establishes various features of the well-known steady solution and reveals the interesting phenomena of stability, instability, and nonlinear wave effects. It is shown that intrinsic flow instabilities cause the wave effects to grow over the well-known experiments-based range of Reδ30. The wave effects due to film flow’s sensitivity to ever-present minuscule transverse vibrations of the condensing surface are also described. The results suggest some ways of choosing wall noise—through suitable actuators—that can enhance or dampen wave fluctuations and thus increase or decrease heat transfer rates over the laminar-to-turbulent transition zone.

1.
Nusselt
,
W.
, 1916, Die Oberflächenkondesation des Wasserdampfes,
Z. Ver. Dt. Ing.
,
60
(
27
), pp.
541
546
.
2.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
3.
Narain
,
A.
,
Liang
,
Q.
,
Yu
,
G.
, and
Wang
,
X.
, 2004, “
Direct Computational Simulations for Internal Condensing Flows and Results on Attainability/Stability of Steady Solutions, their Intrinsic Waviness and their Noise Sensitivity
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
69
88
.
4.
Liang
,
Q.
,
Wang
,
X.
, and
Narain
,
A.
, 2004, “
Effect of Gravity, Shear, and Surface Tension in Internal Condensing Flows—Results From Direct Computational Simulations
,”
ASME J. Heat Transfer
0022-1481,
126
(
5
), pp.
676
686
.
5.
Liang
,
Q.
, 2003, “
Unsteady Computational Simulations and Code Developments for a Study of Internal Film Condensation Flows Stability, Noise Sensitivity and Wavyness
,” Ph.D. thesis, Michigan Technological University.
6.
Rohsenow
,
W. M.
, 1956, “
Heat Transfer and Temperature Distribution in Laminar Film Condensation
,”
Trans. ASME
0097-6822,
78
, pp.
1645
1648
.
7.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
, 1959, “
A Boundary Layer Treatment of Laminar Film Condensation
,”
ASME J. Heat Transfer
0022-1481,
81
, pp.
13
18
.
8.
Chen
,
M. M.
, 1961, “
An Analytical Study of Laminar Film Condensation: Part 1—Flat Plates
,”
ASME J. Heat Transfer
0022-1481,
83
, pp.
48
54
.
9.
Koh
,
J. C. Y.
,
Sparrow
,
E. M.
, and
Hartnett
,
J. P.
, 1961, “
The Tow-Phase Boundary Layer in Laminar Film Condensation
,”
Int. J. Heat Mass Transfer
0017-9310,
2
, pp.
69
82
.
10.
Dhir
,
V. K.
, and
Lienhard
,
J. H.
, 1971, “
Laminar Film Condensation on Plane and Axisymentric Bodies in Nonuniform Gravity
,”
ASME J. Heat Transfer
0022-1481,
93
, pp.
97
100
.
11.
Arnas
,
A. O.
,
Boettner
,
D. D.
,
Benson
,
M. J.
, and
Van Poppel
,
B. P.
, 2004, “
On the Teaching Of Condensation Heat Transfer
,”
Proceedings of ASME-IMECE 2004
, Paper No.: IMECE2004-59277, 15–19 Nov.,
Anaheim, CA
.
12.
Miyara
,
A.
, 2001, “
Flow Dynamics and Heat Transfer of Wavy Condensate Film
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
492
500
.
13.
Stuhlträger
,
E.
,
Naridami
,
Y.
,
Miyara
,
A.
, and
Uehara
,
H.
, 1993, “
Flow Dynamics and Heat Transfer of a Condensate Film on a Vertical Wall—I. Numerical Analysis and Flow Dynamics
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
1677
1686
.
14.
Unsal
,
M.
, and
Thomas
,
W. C.
, 1978, “
Linearized Stability Analysis of Film Condensation
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
629
634
.
15.
Spindler
,
B.
, 1982, “
Linear Stability of Liquid Films With Interfacial Phase Change
,”
Int. J. Heat Mass Transfer
0017-9310,
25
, pp.
161
173
.
16.
Kundu
,
P. K.
, 1990,
Fluid Mechanics
,
Academic Press
,
New York
.
17.
Unsal
,
M.
, and
Thomas
,
W. C.
, 1980, “
Nonlinear Stability of Film Condensation
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
483
488
.
18.
Kutateladze
,
S. S.
, 1963,
Fundamentals of Heat Transfer
,
Academic Press
,
New York
.
19.
Chun
,
K. R.
, and
Seban
,
R. A.
, 1971, “
Heat Transfer to Evaporating Liquid Films
,”
ASME J. Heat Transfer
0022-1481,
93
, pp.
391
396
.
20.
Delhaye
,
J. M.
, 1974, “
Jump Conditions and Entropy Sources in Two-phase Systems; Local Instant Formulation
,”
Int. J. Multiphase Flow
0301-9322,
1
, pp.
395
409
.
21.
Yu
,
G.
, 1999, “
Development of a CFD Code for Computational Simulations and Flow Physics of Annular/Stratified Film Condensation Flows
,” Ph.D. thesis, Michigan Technological University.
22.
COMPACT-2D User Manual (Version 3.1)
, 1994,
Innovative Research, Inc., Computational Fluid Dynamic Company
,
Minneapolis, MN
.
23.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
255
.
25.
Abbott
,
M. B.
, and
Basco
,
D. R.
, 1997,
Computational Fluid Dynamics: An Introduction for Engineers
,
Longman Science and Technol.
, Harlow, Essex, England.
26.
ASHRAE Handbook
, 1985, Fundamentals SI ed.,
American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
27.
Pierson
,
F. W.
, and
Whitaker
,
S.
, 1977, “
Some Theoretical and Experimental Observations of the Wave Structure of Falling Liquid Films
,”
Ind. Eng. Chem. Fundam.
0196-4313,
16
(
4
), pp.
401
408
.
28.
Whitham
,
G. B.
, 1974,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
You do not currently have access to this content.