Quasi-periodic response of a linear oscillator attached to nonlinear energy sink with relatively small mass under external sinusoidal forcing in a vicinity of main (1:1) resonance is studied analytically and numerically. It is shown that the quasi-periodic response is exhibited in well-defined amplitude-frequency range of the external force. Two qualitatively different regimes of the quasi-periodic response are revealed. The first appears as a result of linear instability of the steady-state regime of the oscillations. The second one occurs due to interaction of the dynamical flow with invariant manifold of damped-forced nonlinear normal mode of the system, resulting in hysteretic motion of the flow in the vicinity of this mode. Parameters of external forcing giving rise to the quasi-periodic response are predicted by means of simplified analytic model. The model also allows predicting that the stable quasi-periodic regimes appear for certain range of damping coefficient. All findings of the simplified analytic model are verified numerically and considerable agreement is observed.

1.
Gendelman
,
O. V.
, 2001, “
Transition of Energy to Nonlinear Localized Mode in Highly Asymmetric System of Nonlinear Oscillators
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
237
253
.
2.
Gendelman
,
O. V.
,
Vakakis
,
A. F.
,
Manevitch
,
L. I.
, and
McCloskey
,
R.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators. I: Dynamics of the Underlying Hamiltonian System
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
34
41
.
3.
Vakakis
,
A. F.
, and
Gendelman
,
O. V.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators. II: Resonance Capture
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
42
48
.
4.
Vakakis
,
A. F.
, 2001, “
Inducing Passive Nonlinear Energy Sinks in Linear Vibrating Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
3
), pp.
324
332
.
5.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
, and
Bergman
,
L.
, 2003, “
Dynamics of Linear Discrete Systems Connected to Local Essentially Nonlinear Attachments
,”
J. Sound Vib.
0022-460X,
264
, pp.
559
577
.
6.
Georgiadis
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
M.
, and
Bergman
,
L.
, 2003, “
Shock Isolation Through Passive Energy Pumping in a System With Piecewise Linear Stiffnesses
,”
Proceedings of DETC.03 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Chicago, September 2–6,
ASME
,
New York
, ASME Paper No. VIB-48490, CD-ROM.
7.
Gendelman
,
O. V.
, 2004, “
Bifurcations of Nonlinear Normal Modes of Linear Oscillator With Strongly Nonlinear Damped Attachment
,”
Nonlinear Dyn.
0924-090X,
37
(
2
), pp.
115
128
.
8.
Shaw
,
S. W.
, and
Pierre
,
C.
, 1993, “
Normal Modes for Nonlinear Vibratory Systems
,”
J. Sound Vib.
0022-460X,
164
, pp.
85
124
.
9.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Yu. V.
,
Pilipchuk
,
V. N.
, and
Zevin
,
A. A.
, 1996,
Normal Modes and Localization in Nonlinear Systems
,
Wiley
,
New York
.
10.
Jang
,
X.
,
McFarland
,
M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2003, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
7
102
.
11.
Gendelman
,
O. V.
,
Gourdon
,
E.
, and
Lamarque
,
C. H.
, 2005, “
Quasi-periodic Energy Pumping in Coupled Oscillators Under Periodic Forcing
,”
J. Sound Vib.
0022-460X, (in press).
12.
Shaw
,
J.
,
Shaw
,
S. W.
, and
Haddow
,
A. G.
, 1989, “
On the Response of the Nonlinear Vibration Absorber
,”
Int. J. Non-Linear Mech.
0020-7462,
24
, pp.
281
293
.
13.
Natsiavas
,
S.
, 1992, “
Steady State Oscillations and Stability of Non-Linear Dynamic Vibration Absorbers
,”
J. Sound Vib.
0022-460X,
156
(
2
), pp.
227
245
.
14.
Rice
,
H. J.
, and
McCraith
,
J. R.
, 1987, “
Practical Non-Linear Vibration Absorber Design
,”
J. Sound Vib.
0022-460X,
116
(
3
), pp.
545
559
.
15.
Jackson
,
E. A.
, 1994,
Perspectives of Nonlinear Dynamics
, Vol.
1
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.