First-order shear deformation theories, one proposed by Reissner and another one by Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new displacement based first-order shear deformation theories involving only two unknown functions, as against three functions in case of Reissner’s and Mindlin’s theories, are introduced. For static problems, governing equations of one of the proposed theories are uncoupled. And for dynamic problems, governing equations of one of the theories are only inertially coupled, whereas those of the other theory are only elastically coupled. Both the theories are variationally consistent. The effectiveness of the theories is brought out through illustrative examples. One of the theories has striking similarity with classical plate theory.

1.
Reissner
,
E.
, 1944, “
On the Theory of Bending of Elastic Plates
,”
J. Math. Phys.
0022-2488,
23
, pp.
184
191
.
2.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
Trans. ASME
0097-6822,
67
, pp.
A
-69–A-
77
.
3.
Mindlin
,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
Trans. ASME
0097-6822,
73
, pp.
31
38
.
4.
Wang
,
C. M.
,
Lim
,
G. T.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
, 2001, “
Relationships Between Bending Solutions of Reissner and Mindlin Plate Theories
,”
Eng. Struct.
0141-0296,
23
(
7
), pp.
838
849
.
5.
Krishna Murty
,
A. V.
, 1977, “
Higher Order Theory for Vibrations of Thick Plates
,”
AIAA J.
0001-1452,
15
(
12
), pp.
1823
1824
.
6.
Lo
,
K. H.
,
Christensen
,
R. M.
, and
Wu
,
E. M.
, 1977, “
A High-Order Theory of Plate Deformation Part 1: Homogeneous Plates
,”
ASME J. Appl. Mech.
0021-8936,
44
(
4
), pp.
663
668
.
7.
Kant
,
T.
, 1982, “
Numerical Analysis of Thick Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
31
(
1
), pp.
1
18
.
8.
Bhimaraddi
,
A.
, and
Stevens
,
L. K.
, 1984, “
A Higher Order Theory for Free Vibration of Orthotropic, Homogeneous, and Laminated Rectangular Plates
,”
ASME J. Appl. Mech.
0021-8936,
51
(
1
), pp.
195
198
.
9.
Reddy
,
J. N.
, 1984, “
A Refined Nonlinear Theory of Plates With Transverse Shear Deformation
,”
Int. J. Solids Struct.
0020-7683,
20
(
9/10
), pp.
881
896
.
10.
Soldatos
,
K. P.
, 1988, “
On Certain Refined Theories for Plate Bending
,”
ASME J. Appl. Mech.
0021-8936,
55
(
4
), pp.
994
995
.
11.
Reddy
,
J. N.
, 1990, “
A General Non-Linear Third-Order Theory of Plates With Moderate Thickness
,”
Int. J. Non-Linear Mech.
0020-7462,
25
(
6
), pp.
677
686
.
12.
Hanna
,
N. F.
, and
Leissa
,
A. W.
, 1994, “
A Higher Order Shear Deformation Theory for the Vibration of Thick Plates
,”
J. Sound Vib.
0022-460X,
170
(
4
), pp.
545
555
.
13.
Srinivas
,
S.
,
Joga Rao
,
C. V.
, and
Rao
,
A. K.
, 1970, “
An Exact Analysis for Vibration of Simply-Supported Homogeneous and Laminated Thick Rectangular Plates
,”
J. Sound Vib.
0022-460X,
12
(
2
), pp.
187
199
.
14.
Vasil’ev
,
V. V.
, 1992, “
The Theory of Thin Plates
,”
Mech. Solids
0025-6544,
27
(
3
), pp.
22
42
.
15.
Liew
,
K. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
, 1995, “
Research on Thick Plate Vibration: A Literature Survey
,”
J. Sound Vib.
0022-460X,
180
(
1
), pp.
163
176
.
16.
Ghugal
,
Y. M.
, and
Shimpi
,
R. P.
, 2002, “
A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates
,”
J. Reinf. Plast. Compos.
0731-6844,
21
(
9
), pp.
775
813
.
17.
Wang
,
J.
,
Liew
,
K. M.
,
Tan
,
M. J.
, and
Rajendran
,
S.
, 2002, “
Analysis of Rectangular Laminated Composite Plates via FSDT Meshless Method
,”
Int. J. Mech. Sci.
0020-7403,
44
(
7
), pp.
1275
1293
.
18.
Xiang
,
Y.
, and
Reddy
,
J. N.
, 2003, “
Natural Vibration of Rectangular Plates With an Internal Line Hinge Using the First Order Shear Deformation Plate Theory
,”
J. Sound Vib.
0022-460X,
263
(
2
), pp.
285
297
.
19.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
, 2003, “
Vibration Analysis of Symmetrically Laminated Plates Based on FSDT Using the Moving Least Squares Differential Quadrature Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
19
), pp.
2203
2222
.
20.
Liew
,
K. M.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Lim
,
H. K.
, 2004, “
Dynamic Analysis of Laminated Composite Plates With Piezoelectric Sensor/Actuator Patches Using the FSDT Mesh-Free Method
,”
Int. J. Mech. Sci.
0020-7403,
46
(
3
), pp.
411
431
.
21.
Peng
,
L. X.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Analysis of Rectangular Stiffened Plates Under Uniform Lateral Load Based on FSDT and Element-Free Galerkin Method
,”
Int. J. Mech. Sci.
0020-7403,
47
(
2
), pp.
251
276
.
22.
Liew
,
K. M.
,
Wang
,
C. M.
,
Xiang
,
Y.
, and
Kitipornchai
,
S.
, 1998,
Vibration of Mindlin Plates: Programming the P-Version Ritz Method
, 1st ed.,
Elsevier Science Oxford
.
23.
Shimpi
,
R. P.
, 2002, “
Refined Plate Theory and Its Variants
,”
AIAA J.
0001-1452,
40
(
1
), pp.
137
146
.
24.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
, 2nd ed.,
Taylor and Francis
,
Philadelphia
, pp.
63
67
.
25.
Shames
,
I. H.
, and
Dym
,
C. L.
, 1975,
Energy and Finite Element Methods in Structural Mechanics
,
Hemisphere Publishing
,
New York
, pp.
257
274
.
26.
Kabir
,
H. R. H.
, 1995, “
A Shear-Locking Free Robust Isoparametric Three-Node Triangular Finite Element for Moderately-Thick and Thin Arbitrarily Laminated Plates
,”
Comput. Struct.
0045-7949,
57
(
4
), pp.
589
597
.
27.
Reddy
,
J. N.
, 1997, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
(
1–4
), pp.
113
132
.
28.
Ainsworth
,
M.
, and
Pinchedez
,
K.
, 2002, “
The hp-MITC Finite Element Method for the Reissner-Mindlin Plate Problem
,”
J. Comput. Appl. Math.
0377-0427,
148
(
2
), pp.
429
462
.
29.
Xiao
,
J. R.
, and
McCarthy
,
M. A.
, 2003, “
Meshless Analysis of Timoshenko Beams Based on a Locking-Free Formulation and Variational Approaches
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
39–40
), pp.
4403
4424
.
30.
Brezzi
,
F.
, and
Marini
,
L. D.
, 2003, “
A Nonconforming Element for the Reissner-Mindlin Plate
,”
Comput. Struct.
0045-7949,
81
(
8–11
), pp.
515
522
.
31.
Averill
,
R. C.
, and
Reddy
,
J. N.
, 1992, “
An Assessment of Four-Noded Plate Finite Elements Based On a Generalized Third-Order Theory
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
(
8
), pp.
1553
1572
.
32.
Srinivas
,
S.
, and
Rao
,
A. K.
, 1970, “
Bending, Vibration and Buckling of Simply-Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
0020-7683,
6
(
11
), pp.
1463
1481
.
33.
Srinivas
,
S.
, 1970, “
Three Dimensional Analysis of Some Plates and Laminates and a Study of Thickness Effects
,” Ph.D. thesis, Dept. of Aeronautical Engineering, Indian Institute of Science, Bangalore, India.
34.
Whitney
,
J. M.
, 1973, “
Shear Correction Factors for Orthotropic Laminates Under Static Load
,”
ASME J. Appl. Mech.
0021-8936,
40
(
1
), pp.
302
304
.
35.
Vlachoutsis
,
S.
, 1992, “
Shear Correction Factors for Plates and Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
(
7
), pp.
1537
1552
.
36.
Birman
,
V.
, and
Bert
,
C. W.
, 2002, “
On the Choice of Shear Correction Factor in Sandwich Structures
,”
J. Sandwich Struct. Mat.
,
4
(
1
), pp.
83
95
.
You do not currently have access to this content.