A semi-permeable interface crack in dissimilar piezoelectric materials is studied in detail. Attention is focused on the influence induced from the permittivity of the medium inside the crack gap on the near-tip singularity and the crack tip energy release rate (ERR). The Stroh complex variable theory (Stroh, A. N., 1958, Philos. Mag. 3, pp. 625–646;Ting, T. C. T., Int. J. Solids Struct., 22, pp. 965–983) is used to obtain the solution, from which some useful numerical results for 21 kinds of dissimilar piezoelectric materials are calculated. They are combined from seven kinds of commercial piezoelectric ceramics. The distribution of the normal electric displacement component (NEDC) along the interface crack is assumed to be uniform and the corresponding problem is then deduced to a Hilbert problem with an unknown NEDC. Solving the Hilbert problem and determining the near-tip field for each of the 21 bimaterials, we determine the crack tip singularities and find that the crack-tip singularity for a certain combination of two dissimilar piezoelectric materials can be either oscillatory or nonoscillatory when the poling axes of both piezoelectric materials are perpendicular to the interface crack. Energy analyses for PZT4BaTiO3 as a typical nonoscillatory class bimaterial and those for PZT-5HBaTiO3 as a typical oscillatory class bimaterial are specially studied in detail under four different conditions: (i) the crack gap is filled with air or vacuum; (ii) the crack gap is filled with silicon oil to avoid discharge; (iii) the crack gap is conducting; and (iv) the electrically impermeable crack. Detailed comparisons are performed among the four cases. We conclude that the different values of the permittivity have no influence on the crack tip singularity but have significant influences on the crack tip ERR under the combined electromechanical loading. We also conclude that the previous investigations under the insulating crack model are incorrect or misleading since the model overestimates the effect of the electric field on the ERR very much and the results of the ERR for the impermeable crack show significant discrepancies from those for the semi-permeable crack. Whereas the previous investigations under the conducting crack model may be accepted in a tolerant, way, the results of the ERR show very small discrepancies from those for the semi-permeable crack model, especially when it filled with silicon oil.

1.
Stroh
,
A. N.
, 1958, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
0031-8086,
3
, pp.
625
646
.
2.
Ting
,
T. C. T.
, 1986, “
Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites
,”
Int. J. Solids Struct.
0020-7683,
22
, pp.
965
983
.
3.
Herbert
,
J.
, 1982,
Ferroelectrics Transducers and Sensors
,
Gordon and Breach
,
New York
.
4.
Harrison
,
W. B.
,
McHenry
,
K. D.
, and
Koepke
,
B. G.
, 1986, “
Monolithic Multilayer Piezoelectric Ceramic Transducer
,”
Proceedings IEEE 6th International Symposium Applied Ferroelectrics
, Minneapolis, MN, pp.
265
272
.
5.
Kuo
,
C. M.
, and
Barnett
,
D. M.
, 1991, “
Stress Singularities of Interface Cracks in Bonded Piezoelectric Half-Spaces
,”
Modern Theory of Anisotropic Elasticity and Applications
,
J. J.
Wu
,
T. C.
Ting
, and
D. M.
Barnett
, eds., SIAM Proceeding Series,
Philadelphia
, PA.
6.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
, 1992, “
Fracture Mechanics of Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
739
765
.
7.
Zhong
,
Z.
, and
Meguid
,
S. A.
, 1997, “
Interfacial Debonding of a Circular In-Homogeneity in Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
1965
1984
.
8.
Beom
,
H. G.
, and
Atluri
,
S. N.
, 1996, “
Near-Tip Fields and Intensity Factors for Interfacial Cracks in Dissimilar Anisotropic Piezoelectric Media
,”
Int. J. Fract.
0376-9429,
75
, pp.
163
183
.
9.
Qin
,
Q. H.
, and
Yu
,
S. W.
, 1997, “
An Arbitrarily-Oriented Plane Crack Terminating at Interface Between Dissimilar Piezoelectric Materials
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
581
590
.
10.
Ru
,
C. Q.
,
Mao
,
X.
, and
Epstein
,
M.
, 1998, “
Electric-Field Induced Interfacial Cracking in Multiplayer Electrostrictive Actuators
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
1301
1318
.
11.
Deng
,
W.
, and
Meguid
,
S. A.
, 1998, “
Analysis of Conducting Rigid Inclusion at the Interface of Two Dissimilar Piezoelectric Materials
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
76
84
.
12.
Ding
,
H. J.
,
Chi
,
Y.
, and
Guo
,
F.
, 1999, “
Solutions for Transversely Isotropic Piezoelectric Infinite Body, Semi-Infinite Body and Bimaterial Infinite Body Subjected to Uniform Ring Loading and Charges
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
2613
2631
.
13.
Tian
,
W. Y.
, and
Chen
,
Y. H.
, 2000, “
Interaction Between an Interface Crack and Sub Interface Microcracks in Metal∕Piezoelectric Bimaterials
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7743
7757
.
14.
Ma
,
L. F.
, and
Chen
,
Y. H.
, 2001, “
Weight Function for Interface Cracks in Dissimilar Anisotropic Piezoelectric Materials
,”
Int. J. Fract.
0376-9429,
110
, pp.
263
279
.
15.
Narita
,
K.
, and
Shindo
,
Y.
, 1999, “
Anti-Plane Shear Crack in a Piezoelectric Layer Bonded to Dissimilar Half Spaces
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
66
72
.
16.
Herrmann
,
K. P.
,
Loboda
,
V. V.
, and
Govorukha
,
V. B.
, 2001, “
On Contact Zone Models for an Electrically Impermeable Interface Crack in a Piezoelectric Bimaterial
,”
Int. J. Fract.
0376-9429,
111
, pp.
203
227
.
17.
Parton
,
V. Z.
, and
Kudryavtsev
,
B. A.
, 1988,
Electromagnetoelasticity
,
Gordon and Breach
,
New York
.
18.
Hao
,
T. H.
, and
Shen
,
Z. Y.
, 1994, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Application
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
793
802
.
19.
Dunn
,
M.
, 1994, “
The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,”
Eng. Fract. Mech.
0013-7944,
48
, pp.
25
39
.
20.
Sosa
,
H.
, and
Khutoryansky
,
N.
, 1996, “
New Development Concerning Piezoelectric Materials With Defect
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
3399
3414
.
21.
Xu
,
X. L.
, and
Rajapakse
,
R. K. N. D.
, 2001, “
On a Plane Crack in Piezoelectric Solids
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7643
7658
.
22.
McMeeking
,
R. M.
, 1999, “
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
0013-7944,
64
, pp.
217
244
.
23.
McMeeking
,
R. M.
, 2001, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
0376-9429,
108
, pp.
25
41
.
24.
McMeeking
,
R. M.
, 2004, “
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
1149
1163
.
25.
Liu
,
Y.
, and
Chen
,
Y. H.
, 2005, “
An Analytical Solution for a Cracked Piezoelectric Plate According to the PKHS Electric Boundary Condition
,”
Acta Mech.
0001-5970,
180
, pp.
233
244
.
26.
Ou
,
Z. C.
, and
Chen
,
Y. H.
, 2005, “
On Approach of Crack Tip Energy Release Rate for a Semi-Permeable Crack When Electromechanical Loadings Become Very Large
,”
Int. J. Fract.
0376-9429,
133
, pp.
89
105
.
27.
Chen
,
Y. H.
, and
Hasebe
,
N.
, 2005, “
Current Understanding on Fracture Behaviors of Ferroelectric∕Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
16
, pp.
553
688
.
28.
Ou
,
Z. C.
, and
Chen
,
Y. H.
, 2003, “
Discussion of the Crack Face Electric Boundary Condition in Piezoelectric Fracture Mechanics
,”
Int. J. Fract.
0376-9429,
123
, pp.
L151
L155
.
29.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
0002-7820,
78
, pp.
1475
1480
.
30.
Park
,
S. B.
, and
Sun
,
C. T.
, 1995, “
Effect of Electric Fields on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract.
0376-9429,
70
, pp.
203
216
.
31.
Heyer
,
V.
,
Schneider
,
G. A.
,
Balke
,
H.
,
Drescher
,
J.
, and
Bahr
,
H. A.
, 1998, “
A Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelectric PZT-PIC 151 Ceramics
,”
Acta Mater.
1359-6454,
46
, pp.
6615
6622
.
32.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Leyden
,
The Netherlands
.
33.
England
,
A. H.
, 1965, “
A Crack Between Dissimilar Media
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
400
402
.
34.
Ou
,
Z. C.
, and
Wu
,
X. J.
, 2003, “
On the Crack Tip Stress Singularity of Interfacial Cracks in Transversely Isotropic Piezoelectric Bimaterials
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
7499
7511
.
35.
Wu
,
K. C.
, 1990, “
Stress Intensity Factors and Energy Release Rate for Interfacial Cracks Between Dissimilar Anisotropic Materials
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
882
886
.
36.
Qu
,
J. M.
, and
Li
,
Q. Q.
, 1991, “
Interfacial Dislocation and Its Application to Interface Cracks in Anisotropic Bimaterials
,”
J. Elast.
0374-3535,
26
, pp.
169
195
.
37.
Zhang
,
T. Y.
,
Zhao
,
M. H.
, and
Tong
,
P.
, 2002, “
Fracture of Piezoelectric Ceramics
,”
Adv. Appl. Mech.
0065-2156,
38
, pp.
147
289
.
38.
Chen
,
Y. H.
, and
Lu
,
T. J.
, 2003, “
Cracks and Fracture in Piezoelectric Materials
,”
Adv. Appl. Mech.
0065-2156,
39
, pp.
127
221
.
39.
Zhang
,
T. Y.
, and
Gao
,
C. F.
, 2004, “
Fracture Behaviors of Piezoelectric Materials
,”
Theor. Appl. Fract. Mech.
0167-8442,
41
, pp.
339
379
.
40.
Fulton
,
C. C.
, and
Gao
,
H.
, 2001, “
Effect of Local Polarization Switching on Piezoelectric Fracture
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
927
952
.
You do not currently have access to this content.