This paper is concerned with the nonlinear oscillations and dynamic behavior of a rigid disk-rotor supported by active magnetic bearings (AMB), without gyroscopic effects. The nonlinear equations of motion are derived considering a periodically time-varying stiffness. The method of multiple scales is applied to obtain four first-order differential equations that describe the modulation of the amplitudes and the phases of the vibrations in the horizontal and vertical directions. The stability and the steady-state response of the system at a combination resonance for various parameters are studied numerically, applying the frequency response function method. It is shown that the system exhibits many typical nonlinear behaviors, including multiple-valued solutions, jump phenomenon, hardening, and softening nonlinearity. A numerical simulation using a fourth-order Runge-Kutta algorithm is carried out, where different effects of the system parameters on the nonlinear response of the rotor are reported and compared to the results from the multiple scale analysis. Results are compared to available published work.

1.
El Naschie
,
M. S.
, 1992,
Stress Stability and Chaos in Structural Engineering: An Energy Approach
,
McGraw-Hill
, Singapore.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations
,
Wiley
, New York.
3.
Bajaj
,
A. K.
, 1987, “
Bifurcations in a Parametrically Excited Nonlinear Oscillator
,”
Int. J. Non-Linear Mech.
0020-7462,
22
, pp.
47
59
.
4.
Zhang
,
W.
, and
Ye
,
M.
, 1994, “
Local and Global Bifurcations of Valve Mechanism
,”
Nonlinear Dyn.
0924-090X,
6
, pp.
301
316
.
5.
Ng
,
L.
, and
Rand
,
R.
, 2002, “
Nonlinear Effects on Coexistence Phenomenon in Parametric Excitation
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
73
89
.
6.
Wang
,
K. W.
, and
Lai
,
J. S.
, 1996, “
Parametric Control of Structural Vibrations via Adaptable Stiffness Dynamic Absorbers
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
41
47
.
7.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1997, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
217
226
.
8.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1996, “
Interactions Between Commensurate Parametric and Forcing Excitations in a System With Clearance
,”
J. Sound Vib.
0022-460X,
194
, pp.
317
336
.
9.
Padmanabhan
,
C.
, and
Singh
,
R.
, 1995, “
Influence of a Mean Load on the Response of a Forced Nonlinear Hill’s Oscillator
,” ASME Design Engineering, Technical Conf., Boston.
10.
Ma
,
O.
, and
Kahraman
,
A.
, 2005, “
Period-One Motions of a Mechanical Oscillator With Periodically Time-Varying, Piecewise-Nonlinear Stiffness
,”
J. Sound Vib.
0022-460X,
284
, pp.
893
914
.
11.
Walsh
,
P. L.
, and
Lamancusa
,
J. S.
, 1992, “
A Variable Stiffness Vibration Absorber for Minimization of Transient Vibrations
,”
J. Sound Vib.
0022-460X,
152
(
2
), pp.
195
211
.
12.
Gash
,
R.
, 1976, “
The Dynamic Behavior of a Simple Rotor With Cross-Sectional Crack
,”
Vibrations in Rotating Machinery
,
Institution of Mechanical Engineers
, Cambridge, UK, pp.
123
128
.
13.
Gash
,
R.
, 1993, “
A Survey of the Dynamic Behavior of a Simple Rotating Shaft With a Transverse Crack
,”
J. Sound Vib.
0022-460X,
160
(
2
), pp.
313
332
.
14.
Zhu
,
C.
,
Robb
,
D. A.
, and
Ewins
,
D. J.
, 2003, “
The Dynamics of a Cracked Rotor With an Active Magnetic Bearing
,”
J. Sound Vib.
0022-460X,
265
(
3
), pp.
469
487
.
15.
Quinn
,
D. D.
,
Mani
,
G.
,
Kasadra
,
M. E. F.
,
Bash
,
T.
,
Inman
,
D. J.
, and
Krik
,
R. G.
, 2005, “
Damage Detection of a Rotating Crack Shaft Using an Active Magnetic Bearing as a Force Actuator-Analysis and Experimental Verification
,”
Mechatronics
0957-4158,
10
(
6
), pp.
640
646
.
16.
Mani
,
G.
,
Quin
,
D. D.
, and
Kasadra
,
M.
, 2006, “
Active Health Monitoring in a Rotating Crack Shaft Using Active Magnetic Bearings as Force Actuators
,”
J. Sound Vib.
0022-460X,
294
(
3
), pp.
454
465
.
17.
Zhang
,
W.
, and
Zu
,
J. W.
, 2003, “
Nonlinear Dynamic Analysis for a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness—Part I: Formulation and Local Bifurcation
,”
Proc. of 2003 ASME International Mechanical Engineering Congress and Exposition
, Washington, DC, Nov. 16–21, New York,
ASME
, New York, pp.
631
640
.
18.
Zhang
,
W.
,
Yao
,
M. H.
, and
Zhan
,
X. P.
, 2005, “
Multi-Pulse Chaotic Motions of a Rotor-Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
27
, pp.
175
186
.
19.
Zhang
,
W.
, and
Zhan
,
X. P.
, 2005, “
Periodic and Chaotic Motions of a Rotor-Active Magnetic Bearing With Quadratic and Cubic Terms and Time-Varying Stiffness
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
331
359
.
20.
Amer
,
Y. A.
, and
Hegazy
,
U. H.
, 2007, “
Resonance Behavior of a Rotor-Active Magnetic Bearing With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
0960-0779,
34
, pp.
1328
1345
.
21.
Xie
,
H.
, and
Folwers
,
G. T.
, 1994, “
Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System
,” ASME Winter Annual Meeting, Nov., Chicago, pp.
13
18
.
22.
Hu
,
T.
,
Lin
,
Z.
,
Jiang
,
W.
, and
Allaire
,
P. E.
, 2005, “
Constrained Control Design for Magnetic Bearing Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
601
616
.
23.
Steinschaden
,
N.
, and
Springer
,
H.
, 1999, “
Some Nonlinear Effects of Magnetic Bearings
,”
Proc. 1999 ASME Design Engineering Technical Conferences
, Sept. 12–15, Las Vegas,
ASME
, New York, pp.
1
9
.
24.
Wang
,
X.
, and
Noah
,
S.
, 1998, “
Nonlinear Dynamics of a Magnetically Supported Rotor on Safety Auxiliary Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
596
606
.
25.
Chinta
,
M.
, and
Palazzolo
,
A. B.
, 1998, “
Stability and Bifurcation of Rotor Motion in a Magnetic Bearing
,”
J. Sound Vib.
0022-460X,
214
, pp.
793
803
.
26.
Ji
,
J. C.
,
Yu
,
L.
, and
Leung
,
A. Y. T.
, 2000, “
Bifurcation Behavior of a Rotor Supported by Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
235
, pp.
133
151
.
27.
Ji
,
J. C.
, and
Hansen
,
C. H.
, 2001, “
Non-linear Oscillations of a Rotor in Active Magnetic Bearings
,”
J. Sound Vib.
0022-460X,
240
, pp.
599
612
.
28.
Ji
,
J. C.
, and
Leung
,
A. Y. T.
, 2003, “
Non-Linear Oscillations of a Rotor-Magnetic Bearing System Under Superharmonic Resonance Conditions
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
829
835
.
29.
Amer
,
Y. A.
,
Eissa
,
M. H.
,
Hegazy
,
U. H.
, and
Sabbah
,
A. S.
, 2006, “
Dynamic Behavior of an AMB/ Supported Rotor Subject to Parametric Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
646
652
.
30.
Eissa
,
M. H.
,
Hegazy
,
U. H.
, and
Amer
,
Y. A.
, 2007, “
Dynamic Behavior of an AMB Supported Rotor Subject to Harmonic Excitation
,”
Appl. Math. Model.
0307-904X (in press).
You do not currently have access to this content.