A two-stage experimental program was conducted, which was aimed at examining the process of initiation/propagation of fracture in human radii under the conditions simulating a fall onto an outstretched hand. It involved a number of destructive tests on dried cadaver bones. The bones were first subjected to DXA as well as spiral CT measurements to establish the density properties and the details of geometry. Subsequently, the specimens were tested under controlled boundary conditions, to induce Colles’ type of fracture. Following these tests, samples of cortical bone tissue were extracted at different orientations with respect to the direction of osteons and tested in axial tension. The results of material tests were used to verify the performance of an anisotropic fracture criterion for the cortical tissue. It has been demonstrated that the proposed criterion can reproduce the basic trends in the directional dependence of the tensile strength characteristics. For the structural tests, a correlation was established between the geometric characteristics of the cortex, the strength properties and the fracture load for individual radii that were tested. It was shown that the morphological traits and/or the strength properties alone are not adequate predictors of the fracture load of intact radii. A rational assessment of the fracture load requires a mechanical analysis that incorporates the key elements of the experimental program outlined here, i.e., the information on bone geometry, material properties of the bone tissue, and the static/kinematic boundary conditions. A preliminary example of a finite element analysis, for one of the radii bones tested, has been provided.

1.
Hoynak
,
B. C.
, and
Hopson
,
L.
, 2007, “
Fractures, Wrist
,” Online article on eMedicine from WebMD, http://www.emedicine.com/emerg/topic844.htmhttp://www.emedicine.com/emerg/topic844.htm
2.
Spadaro
,
J. A.
,
Werner
,
F. W.
,
Brenner
,
R. A.
,
Fortino
,
M. D.
,
Fay
,
L. A.
, and
Edwards
,
W. T.
, 1994, “
Cortical and Trabecular Bone Contribute Strength to the Osteopenic Distal Radius
,”
J. Orthop. Res.
0736-0266,
12
(
2
), pp.
211
218
.
3.
Jordan
,
G. R.
,
Loveridge
,
N.
,
Bell
,
K. L.
,
Power
,
J.
,
Rushton
,
N.
, and
Reeve
,
J.
, 2000, “
Spatial Clustering of Remodeling Osteons in the Femoral Neck Cortex: A Cause of Weakness in Hip Fracture
?”
Bone
8756-3282,
26
, pp.
305
313
.
4.
Tsai
,
S. W.
, and
Wu
,
E. M.
, 1971, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
0021-9983,
5
, pp.
58
80
.
5.
Cowin
,
S. C.
, 1986, “
Fabric Dependence of an Anisotropic Strength Criterion
,”
Mech. Mater.
0167-6636,
5
, pp.
251
260
.
6.
Pietruszczak
,
S.
,
Inglis
,
D.
, and
Pande
,
G. N.
, 1999, “
A Fabric-Dependent Fracture Criterion for Trabecular Bone
,”
J. Biomech.
0021-9290,
32
, pp.
1071
1079
.
7.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
,
Chen
,
T. J.
, and
Keaveny
,
T. M.
, 2000, “
High-Resolution Finite Element Models With Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone
,”
J. Biomech.
0021-9290,
33
, pp.
1575
1583
.
8.
Ulrich
,
D.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
, 1999, “
Load Transfer Analysis of the Distal Radius From In Vivo High-Resolution CT Imaging
,”
J. Biomech.
0021-9290,
32
, pp.
821
828
.
9.
Pistoia
,
W.
,
Van Rietbergen
,
B.
,
Lochmuller
,
E. M.
,
Lill
,
C. A.
,
Eckstein
,
F.
, and
Rügsegger
,
P.
, 2002, “
Estimation of Distal Radius Failure Load With Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images
,”
Bone
8756-3282,
30
, pp.
842
848
.
10.
Pistoia
,
W.
,
Van Reitbergen
,
B.
, and
Rügsegger
,
P.
, 2003, “
Mechanical Consequences of Different Scenarios for Simulated Bone Atrophy and Recovery in the Distal Radius
,”
Bone
8756-3282,
33
, pp.
937
947
.
11.
Ashman
,
R. B.
,
Cowin
,
S. C.
,
Van Buskirk
,
W. C.
, and
Rice
,
J. C.
, 1984, “
A Continuous Wave Technique for the Measurement of the Elastic Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
17
, pp.
349
361
.
12.
Pietruszczak
,
S.
,
Gdela
,
K.
,
Webber
,
C. E.
, and
Inglis
,
D.
, 2007, “
On the Assessment of Brittle-Elastic Cortical Bone Fracture in the Distal Radius
,”
Eng. Fract. Mech.
0013-7944,
74
, pp.
1917
1927
.
13.
Pietruszczak
,
S.
, and
Mroz
,
Z.
, 2001, “
On Failure Criteria for Anisotropic Cohesive-Frictional Materials
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
25
, pp.
509
524
.
14.
Augat
,
P.
,
Iida
,
H.
,
Jiang
,
Y.
,
Diao
,
E.
, and
Genant
,
H. K.
, 1998, “
Distal Radius Fractures: Mechanisms of Injury and Strength Prediction by Bone Mineral Assessment
,”
J. Orthop. Res.
0736-0266,
16
, pp.
629
635
.
15.
Muller
,
M. E.
,
Webber
,
C. E.
, and
Bouxsein
,
M. L.
, 2003, “
Predicting the Failure Load of the Distal Radius
,”
Osteoporosis Int.
0937-941X,
14
, pp.
345
352
.
16.
McElhaney
,
J. H.
, 1966, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
0021-8987,
21
, pp.
1231
1236
.
17.
Fernandez
,
D. L.
, 2001, “
Distal Radius Fracture: The Rationale of Classification
,”
Ann. Chir. Main
0753-9053,
20
,
411
425
.
18.
Evans
,
F. G.
, 1973,
Mechanical Properties of Bone
, C. C. Thomas, Springfield, IL.
19.
Currey
,
J. D.
, 1988, “
Strain Rate and Mineral Content in Fracture Models of Bone
,”
J. Orthop. Res.
0736-0266,
6
, pp.
32
38
.
20.
Currey
,
J. D.
, 1988, “
The Effects of Drying and Re-Wetting on Some Mechanical Properties of Cortical Bone
,”
J. Biomech.
0021-9290,
21
, pp.
439
441
.
21.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer-Verlag
,
New York
.
22.
Odgaard
,
A.
, 1997, “
Three-Dimensional Methods for Quantification of Cancellous Bone Architecture
,”
Bone
8756-3282,
20
, pp.
315
328
.
23.
Smit
,
T. H.
,
Schneider
,
E.
, and
Odgaard
,
A.
, 1998, “
Star Length Distribution: A Volume-Based Concept for the Characterization of Structural Anisotropy
,”
J. Microsc.
0022-2720,
3
, pp.
249
257
.
24.
Inglis
,
D.
, and
Pietruszczak
,
S.
, 2003, “
Characterization of Anisotropy in Porous Media by Means of Linear Intercept Measurements
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
1243
1264
.
25.
Guo
,
X. E.
, 2001,
Bone Mechanics Handbook
,
CRC
,
Boca Raton, FL
, Chap. 10, pp.
1
19
.
26.
Reilly
,
D. T.
, and
Burstein
,
A. H.
, 1975, “
The Elastic and Ultimate Properties of Compact Bone Tissue
,”
J. Biomech.
0021-9290,
8
, pp.
393
405
.
27.
Jepsen
,
K. J.
,
Davy
,
D. T.
, and
Akkus
,
O.
, 2001,
Bone Mechanics Handbook
,
CRC
,
Boca Raton, FL
, Chap. 17, pp.
1
18
.
28.
Turner
,
C. H.
,
Rho
,
J.
,
Takano
,
Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1999, “
The Elastic Properties of Trebecular and Cortical Bone Tissues are Similar; Results From Two Microscopic Measurement Techniques
,”
J. Biomech.
0021-9290,
32
, pp.
437
441
.
29.
Snyder
,
S. M.
,
Schneider
,
E.
, and
Muller
,
M. E.
, 1991, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
0736-0266,
9
, pp.
422
431
.
30.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
, 1995, “
Relation of Mechanical Properties to Density and CT Numbers in Human Bones
,”
Med. Eng. Phys.
1350-4533,
17
, pp.
347
355
.
31.
Wachter
,
N. J.
,
Augat
,
P.
,
Krichak
,
G. D.
,
Sarkar
,
M. R.
,
Mentzel
,
M.
,
Kinzl
,
L.
, and
Claes
,
L.
, 2001, “
Prediction of the Strength of the Cortical Bone in Vitro by Microcomputed Tomography
,”
Clin. Biomech.
0268-0033,
16
, pp.
252
256
.
You do not currently have access to this content.