In this paper, we discuss the motion of a vesicle in a linear shear flow. It is known that deformable vesicles such as liposomes show the so-called tank-treading and tumbling motions depending on the viscosity ratio between the inside and outside of the vesicle, the swelling ratio, and so on. First, we have conducted numerical simulations on the tank-treading motion of a liposome in a linear shear flow and compared the results with other numerical and experimental results. It is confirmed that the inclination angle of the vesicle becomes smaller when the viscosity ratio becomes larger or the swelling ratio becomes smaller and that the present results show quantitatively good agreement with other results. Then, the effects of membrane modeling are discussed from the mechanics point of view. There are two types of modeling for the lipid bilayer biomembrane. One is a two-dimensional fluid membrane, which reflects the fluidity of the lipid molecules. The other is a hyperelastic membrane, which reflects the stiffness of cytoskeleton structure. Liposome is usually modeled as a fluid membrane and red blood cell (RBC) is modeled as a hyperelastic one. We discuss how these differences of membrane models affect the behaviors of vesicles under the presence of shear flow. It is shown that the hyperelastic membrane model for RBC shows a less inclination angle of tank-treading motion and early transition from tank-treading to tumbling.

1.
Sugii
,
T.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
, 2005, “
A Molecular-Dynamics Study of Lipid Bilayers: Effects of the Hydrocarbon Chain Length on Permeability
,”
J. Chem. Phys.
0021-9606,
123
, p.
184714
.
2.
Sugii
,
T.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
, 2007, “
A Meso-Scale Analysis of Lipid Bilayers With the Dissipative Particle Dynamics Method: Thermally Fluctuating Interfaces
,”
Int. J. Numer. Methods Fluids
0271-2091,
54
, pp.
831
840
.
3.
Beaucourt
,
J.
,
Rioual
,
F.
,
Seon
,
T.
,
Biben
,
T.
, and
Misbah
,
C.
, 2004, “
Steady to Unsteady Dynamics of a Vesicle in a Flow
,”
Phys. Rev. E
1063-651X,
69
, p.
011906
.
4.
Kraus
,
M.
,
Wintz
,
W.
, and
Seifert
,
U.
, 1996, “
Fluid Vesicles in Shear Flow
,”
Phys. Rev. Lett.
0031-9007,
77
(
17
), pp.
3685
3688
.
5.
Boryczko
,
K.
,
Dzwinel
,
W.
, and
Yuen
,
D. A.
, 2003, “
Dynamical Clustering of Red Blood Cells in Capillary Vessels
,”
J. Mol. Model.
,
9
, pp.
16
33
. 1610-2940
6.
Tanaka
,
M.
, and
Koshizuka
,
S.
, 2007, “
Simulation of Red Blood Cell Deformation Using a Particle Method
,”
Nagare
0286-3154,
26
, pp.
49
55
.
7.
Evans
,
E. A.
, and
Skalak
,
R.
, 1980,
Mechanics and Thermodynamics of Biomembranes
,
CRC
,
Bota Raton, FL
.
8.
Eggleton
,
C. D.
, and
Popel
,
S.
, 1998, “
Large Deformation of Red Blood Cell Ghosts in a Simple Shear Flow
,”
Phys. Fluids
1070-6631,
10
, pp.
1834
1845
.
9.
Pozrikidis
,
C.
, 2001, “
Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,”
J. Fluid Mech.
0022-1120,
440
, pp.
269
291
.
10.
Barthes-Biesel
,
D.
,
Diaz
,
A.
, and
Dhenin
,
E.
, 2002, “
Effect of Constitutive Laws for Two-Dimensional Membranes on Flow-Induced Capsule Deformation
,”
J. Fluid Mech.
0022-1120,
460
, pp.
211
222
.
11.
Peskin
,
C.
, 1977, “
Numerical Analysis of Blood Flows in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
252
.
12.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
, 2006, “
Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
2002
2027
. 0045-7825
13.
Khurram
,
R.
, and
Masud
,
A.
, 2006, “
A Multiscale/Stabilized Formulation of the Incompressible Navier–Stokes equations for Moving Boundary Flows and Fluid-Structure Interaction
,”
Comput. Mech.
0178-7675,
38
(
4–5
), pp.
403
416
.
14.
Helfrich
,
W.
, 1973, “
Elastic Properties of Lipid Bilayers: Theory and Possible Experiments
,”
Z. Naturforsch [C]
0341-0382,
28
, pp.
693
703
.
15.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
16.
Evans
,
E.
, and
Fung
,
Y.
, 1972, “
Improved Measurement of the Erythrocyte Geometry
,”
Microvasc. Res.
0026-2862,
4
, pp.
335
347
.
17.
Chien
,
S.
,
Sung
,
K.
,
Skalak
,
R.
,
Usami
,
S.
, and
Tozeren
,
A.
, 1978, “
Theoretical and Experimental Studies on Viscoelastic Properties of Erythrocyte Membrane
,”
Biophys. J.
,
24
, pp.
463
487
. 0006-3495
18.
Hatakenaka
,
R.
,
Takagi
,
S.
, and
Matsumoto
,
Y.
, 2008, “
The Behavior of a Lipid Bilayer Vesicle in a Simple Shear Flow (1st Report, Validation of the Relationship Between Inclination Angle and Swelling Ratio)
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
74
, pp.
530
535
.
19.
Abkarian
,
M.
,
Lartigue
,
C.
, and
Viallat
,
A.
, 2002, “
Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force
,”
Phys. Rev. Lett.
0031-9007,
88
(
6
), p.
068103
.
20.
Keller
,
S.
, and
Skalak
,
R.
, 1982, “
Motion of a Tank-Treading Ellipsoidal Particle in a Shear Flow
,”
J. Fluid Mech.
0022-1120,
120
, pp.
27
47
.
21.
Fischer
,
T.
, and
Schonbein
,
H. S.
, 1977, “
Tank Tread Motion of Red Cell Membranes in Viscometric Flow: Behavior of Intracellular and Extracellular Markers (With Film)
,”
Blood Cells
,
3
, pp.
351
365
. 0340-4684
You do not currently have access to this content.