The streamline-upwind/Petrov–Galerkin (SUPG) formulation of compressible flows based on conservation variables, supplemented with shock-capturing, has been successfully used over a quarter of a century. In this paper, for inviscid compressible flows, the shock-capturing parameter, which was developed recently and is based on conservation variables only, is compared with an earlier parameter derived based on the entropy variables. Our studies include comparing, in the context of these two versions of the SUPG formulation, computational efficiency of the element- and edge-based data structures in iterative computation of compressible flows. Tests include 1D, 2D, and 3D examples.
1.
Hughes
, T. J. R.
, and Brooks
, A. N.
, 1979, “A Multi-Dimensional Upwind Scheme With No Crosswind Diffusion
,” in Finite Element Methods for Convection Dominated Flows
, AMD-Vol. 34
, T. J. R.
Hughes
, ed., ASME
, New York
, pp. 19
–35
.2.
Brooks
, A. N.
, and Hughes
, T. J. R.
, 1982, “Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 32
, pp. 199
–259
.3.
Tezduyar
, T. E.
, and Hughes
, T. J. R.
, 1982, “Development of Time-Accurate Finite Element Techniques for First-Order Hyperbolic Systems With Particular Emphasis on the Compressible Euler Equations
,” NASA
Technical Report No. NASA-CR-204772.4.
Tezduyar
, T. E.
, and Hughes
, T. J. R.
, 1983, “Finite Element Formulations for Convection Dominated Flows With Particular Emphasis on the Compressible Euler Equations
,” AIAA Paper No. 83-0125.5.
Hughes
, T. J. R.
, and Tezduyar
, T. E.
, 1984, “Finite Element Methods for First-Order Hyperbolic Systems With Particular Emphasis on the Compressible Euler Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 45
, pp. 217
–284
.6.
Hughes
, T. J. R.
, Franca
, L. P.
, and Mallet
, M.
, 1987, “A New Finite Element Formulation for Computational Fluid Dynamics: VI. Convergence Analysis of the Generalized Supg Formulation for Linear Time-Dependent Multi-Dimensional Advective-Diffusive Systems
,” Comput. Methods Appl. Mech. Eng.
, 63
, pp. 97
–112
. 0045-78257.
Le Beau
, G. J.
, and Tezduyar
, T. E.
, 1991, “Finite Element Computation of Compressible Flows With the SUPG Formulation
,” Advances in Finite Element Analysis in Fluid Dynamics
, FED-Vol. 123
, ASME
, New York
, pp. 21
–27
.8.
Le Beau
, G. J.
, Ray
, S. E.
, Aliabadi
, S. K.
, and Tezduyar
, T. E.
, 1993, “SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations
,” Comput. Methods Appl. Mech. Eng.
, 104
, pp. 397
–422
. 0045-78259.
Tezduyar
, T. E.
, and Park
, Y. J.
, 1986, “Discontinuity Capturing Finite Element Formulations for Nonlinear Convection-Diffusion-Reaction Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 59
, pp. 307
–325
.10.
Tezduyar
, T. E.
, and Osawa
, Y.
, 2000, “Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 190
, pp. 411
–430
.11.
Catabriga
, L.
, Coutinho
, A. L. G. A.
, and Tezduyar
, T. E.
, 2005, “Compressible Flow SUPG Parameters Computed From Element Matrices
,” Commun. Numer. Methods Eng.
, 21
, pp. 465
–476
. 1069-829912.
Catabriga
, L.
, Coutinho
, A. L. G. A.
, and Tezduyar
, T. E.
, 2006, “Compressible Flow SUPG Parameters Computed From Degree-of-Freedom Submatrices
,” Comput. Mech.
, 38
, pp. 334
–343
. 0178-767513.
Catabriga
, L.
, Coutinho
, A. L. G. A.
, and Tezduyar
, T. E.
, 2004, “Compressible Flow SUPG Stabilization Parameters Computed From Element-Edge Matrices
,” Comput. Fluid Dyn. J.
0918-6654, 13
, pp. 450
–459
.14.
Catabriga
, L.
, and Coutinho
, A. L. G. A.
, 2002, “Implicit SUPG Solution of Euler Equations Using Edge-Based Data Structures
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 3477
–3490
. 0045-782515.
Tezduyar
, T. E.
, 2004, “Finite Element Methods for Fluid Dynamics With Moving Boundaries and Interfaces
,” Encyclopedia of Computational Mechanics
, Vol. 3
(Fluids
), E.
Stein
, R.
De Borst
, and T. J. R.
Hughes
, eds., Wiley
, New York
, Chap. 17.16.
Tezduyar
, T. E.
, 2004 “Determination of the Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows
,” Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004
, Jyvaskyla, Finland.17.
Tezduyar
, T. E.
, 2007, “Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces
,” Comput. Fluids
, 36
, pp. 191
–206
. 0045-793018.
Tezduyar
, T. E.
, and Senga
, M.
, 2006, “Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 1621
–1632
. 0045-782519.
Tezduyar
, T. E.
, and Senga
, M.
, 2007, “SUPG Finite Element Computation of Inviscid Supersonic Flows With YZβ Shock-Capturing
,” Comput. Fluids
, 36
, pp. 147
–159
. 0045-793020.
Tezduyar
, T. E.
, Senga
, M.
, and Vicker
, D.
, 2006, “Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the Supg Formulation and YZβ Shock-Capturing
,” Comput. Mech.
0178-7675, 38
, pp. 469
–481
.21.
Rispoli
, F.
, Saavedra
, R.
, Corsini
, A.
, and Tezduyar
, T. E.
, 2007, “Computation of Inviscid Compressible Flows With the V-SGS Stabilization and YZβ Shock-Capturing
,” Int. J. Numer. Methods Fluids
, 54
, pp. 695
–706
. 0271-209122.
Corsini
, A.
, Rispoli
, F.
, and Santoriello
, A.
, 2005, “A Variational Multiscale High-Order Finite Element Formulation for Turbomachinery Flow Computations
,” Comput. Methods Appl. Mech. Eng.
, 194
, pp. 4797
–4823
. 0045-782523.
Rispoli
, F.
, and Saavedra
, R.
, 2006, “A Stabilized Finite Element Method Based on SGS Models for Compressible Flows
,” Comput. Methods Appl. Mech. Eng.
, 196
, pp. 652
–664
. 0045-782524.
Saad
, Y.
, and Schultz
, M.
, 1986, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204, 7
, pp. 856
–869
.25.
Aliabadi
, S. K.
, Ray
, S. E.
, and Tezduyar
, T. E.
, 1993, “SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations
,” Comput. Mech.
, 11
, pp. 300
–312
. 0178-767526.
Souza
, D. A. F.
, Martins
, M. A. D.
, and Coutinho
, A. L. G. A.
, 2005, “Edge-Based Adaptive Implicit/Explicit Finite Element Procedures for Three-Dimensional Transport Problems
,” Commun. Numer. Methods Eng.
1069-8299, 21
, pp. 545
–552
.27.
Lohner
, R.
, 2001, Applied CFD Techniques: An Introduction Based on Finite Element Methods
, Springer-Verlag
, Berlin
/Wiley
, New York
.28.
Coutinho
, A. L. G. A.
, Martins
, M. A. D.
, Sydenstricker
, R. M.
, and Elias
, R. N.
, 2006, “Performance Comparison of Data-Reordering Algorithms for Sparse Matrix-Vector Multiplication in Edge-Based Unstructured Grid Computations
,” Int. J. Numer. Methods Eng.
0029-5981, 66
, pp. 431
–460
.29.
Luo
, H.
, Baum
, J. D.
, and Lohner
, R.
, 2006, “A Hybrid Cartesian Grid and Gridless Method for Compressible Flow
,” J. Comput. Phys.
, 214
, pp. 618
–632
. 0021-999130.
Emery
, A. F.
, 1968, “An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems
,” J. Comput. Phys.
0021-9991, 2
, pp. 306
–331
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.