The streamline-upwind/Petrov–Galerkin (SUPG) formulation of compressible flows based on conservation variables, supplemented with shock-capturing, has been successfully used over a quarter of a century. In this paper, for inviscid compressible flows, the YZβ shock-capturing parameter, which was developed recently and is based on conservation variables only, is compared with an earlier parameter derived based on the entropy variables. Our studies include comparing, in the context of these two versions of the SUPG formulation, computational efficiency of the element- and edge-based data structures in iterative computation of compressible flows. Tests include 1D, 2D, and 3D examples.

1.
Hughes
,
T. J. R.
, and
Brooks
,
A. N.
, 1979, “
A Multi-Dimensional Upwind Scheme With No Crosswind Diffusion
,” in
Finite Element Methods for Convection Dominated Flows
, AMD-Vol.
34
,
T. J. R.
Hughes
, ed.,
ASME
,
New York
, pp.
19
35
.
2.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
3.
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 1982, “
Development of Time-Accurate Finite Element Techniques for First-Order Hyperbolic Systems With Particular Emphasis on the Compressible Euler Equations
,”
NASA
Technical Report No. NASA-CR-204772.
4.
Tezduyar
,
T. E.
, and
Hughes
,
T. J. R.
, 1983, “
Finite Element Formulations for Convection Dominated Flows With Particular Emphasis on the Compressible Euler Equations
,” AIAA Paper No. 83-0125.
5.
Hughes
,
T. J. R.
, and
Tezduyar
,
T. E.
, 1984, “
Finite Element Methods for First-Order Hyperbolic Systems With Particular Emphasis on the Compressible Euler Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
45
, pp.
217
284
.
6.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Mallet
,
M.
, 1987, “
A New Finite Element Formulation for Computational Fluid Dynamics: VI. Convergence Analysis of the Generalized Supg Formulation for Linear Time-Dependent Multi-Dimensional Advective-Diffusive Systems
,”
Comput. Methods Appl. Mech. Eng.
,
63
, pp.
97
112
. 0045-7825
7.
Le Beau
,
G. J.
, and
Tezduyar
,
T. E.
, 1991, “
Finite Element Computation of Compressible Flows With the SUPG Formulation
,”
Advances in Finite Element Analysis in Fluid Dynamics
, FED-Vol.
123
,
ASME
,
New York
, pp.
21
27
.
8.
Le Beau
,
G. J.
,
Ray
,
S. E.
,
Aliabadi
,
S. K.
, and
Tezduyar
,
T. E.
, 1993, “
SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
104
, pp.
397
422
. 0045-7825
9.
Tezduyar
,
T. E.
, and
Park
,
Y. J.
, 1986, “
Discontinuity Capturing Finite Element Formulations for Nonlinear Convection-Diffusion-Reaction Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
59
, pp.
307
325
.
10.
Tezduyar
,
T. E.
, and
Osawa
,
Y.
, 2000, “
Finite Element Stabilization Parameters Computed From Element Matrices and Vectors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
411
430
.
11.
Catabriga
,
L.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E.
, 2005, “
Compressible Flow SUPG Parameters Computed From Element Matrices
,”
Commun. Numer. Methods Eng.
,
21
, pp.
465
476
. 1069-8299
12.
Catabriga
,
L.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E.
, 2006, “
Compressible Flow SUPG Parameters Computed From Degree-of-Freedom Submatrices
,”
Comput. Mech.
,
38
, pp.
334
343
. 0178-7675
13.
Catabriga
,
L.
,
Coutinho
,
A. L. G. A.
, and
Tezduyar
,
T. E.
, 2004, “
Compressible Flow SUPG Stabilization Parameters Computed From Element-Edge Matrices
,”
Comput. Fluid Dyn. J.
0918-6654,
13
, pp.
450
459
.
14.
Catabriga
,
L.
, and
Coutinho
,
A. L. G. A.
, 2002, “
Implicit SUPG Solution of Euler Equations Using Edge-Based Data Structures
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
3477
3490
. 0045-7825
15.
Tezduyar
,
T. E.
, 2004, “
Finite Element Methods for Fluid Dynamics With Moving Boundaries and Interfaces
,”
Encyclopedia of Computational Mechanics
, Vol.
3
(
Fluids
),
E.
Stein
,
R.
De Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
,
New York
, Chap. 17.
16.
Tezduyar
,
T. E.
, 2004 “
Determination of the Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows
,”
Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2004
, Jyvaskyla, Finland.
17.
Tezduyar
,
T. E.
, 2007, “
Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces
,”
Comput. Fluids
,
36
, pp.
191
206
. 0045-7930
18.
Tezduyar
,
T. E.
, and
Senga
,
M.
, 2006, “
Stabilization and Shock-Capturing Parameters in SUPG Formulation of Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1621
1632
. 0045-7825
19.
Tezduyar
,
T. E.
, and
Senga
,
M.
, 2007, “
SUPG Finite Element Computation of Inviscid Supersonic Flows With YZβ Shock-Capturing
,”
Comput. Fluids
,
36
, pp.
147
159
. 0045-7930
20.
Tezduyar
,
T. E.
,
Senga
,
M.
, and
Vicker
,
D.
, 2006, “
Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the Supg Formulation and YZβ Shock-Capturing
,”
Comput. Mech.
0178-7675,
38
, pp.
469
481
.
21.
Rispoli
,
F.
,
Saavedra
,
R.
,
Corsini
,
A.
, and
Tezduyar
,
T. E.
, 2007, “
Computation of Inviscid Compressible Flows With the V-SGS Stabilization and YZβ Shock-Capturing
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
695
706
. 0271-2091
22.
Corsini
,
A.
,
Rispoli
,
F.
, and
Santoriello
,
A.
, 2005, “
A Variational Multiscale High-Order Finite Element Formulation for Turbomachinery Flow Computations
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
4797
4823
. 0045-7825
23.
Rispoli
,
F.
, and
Saavedra
,
R.
, 2006, “
A Stabilized Finite Element Method Based on SGS Models for Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
652
664
. 0045-7825
24.
Saad
,
Y.
, and
Schultz
,
M.
, 1986, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
, pp.
856
869
.
25.
Aliabadi
,
S. K.
,
Ray
,
S. E.
, and
Tezduyar
,
T. E.
, 1993, “
SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations
,”
Comput. Mech.
,
11
, pp.
300
312
. 0178-7675
26.
Souza
,
D. A. F.
,
Martins
,
M. A. D.
, and
Coutinho
,
A. L. G. A.
, 2005, “
Edge-Based Adaptive Implicit/Explicit Finite Element Procedures for Three-Dimensional Transport Problems
,”
Commun. Numer. Methods Eng.
1069-8299,
21
, pp.
545
552
.
27.
Lohner
,
R.
, 2001,
Applied CFD Techniques: An Introduction Based on Finite Element Methods
,
Springer-Verlag
,
Berlin
/
Wiley
,
New York
.
28.
Coutinho
,
A. L. G. A.
,
Martins
,
M. A. D.
,
Sydenstricker
,
R. M.
, and
Elias
,
R. N.
, 2006, “
Performance Comparison of Data-Reordering Algorithms for Sparse Matrix-Vector Multiplication in Edge-Based Unstructured Grid Computations
,”
Int. J. Numer. Methods Eng.
0029-5981,
66
, pp.
431
460
.
29.
Luo
,
H.
,
Baum
,
J. D.
, and
Lohner
,
R.
, 2006, “
A Hybrid Cartesian Grid and Gridless Method for Compressible Flow
,”
J. Comput. Phys.
,
214
, pp.
618
632
. 0021-9991
30.
Emery
,
A. F.
, 1968, “
An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems
,”
J. Comput. Phys.
0021-9991,
2
, pp.
306
331
.
You do not currently have access to this content.