This paper deals with systems governed by the Mathieu–Duffing equation, with a time-dependent coefficient of the linear term and a constant, not necessarily small coefficient of the cubic term. This coefficient can be positive or negative. The method of strained parameters applied to a linear system governed by the Mathieu equation is extended to a strongly nonlinear system. As a result, the curves corresponding to the parameter values at which periodic solutions exist are obtained. It is shown that they strongly depend on the value of the coefficient of nonlinearity and the initial conditions. The corresponding parameter planes are plotted. Numerical integrations are carried out to confirm the analytical results.

1.
Faraday
,
M.
, 1831, “
On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by a Group of Particles Upon Vibrating Elastic Surfaces
,”
Philos. Trans. R. Soc. London
0370-2316,
121
, pp.
299
318
.
2.
Mond
,
M.
, and
Cederbaum
,
G.
, 1993, “
Stability Analysis of the Non-Linear Mathieu Equation
,”
J. Sound Vib.
,
167
(
1
), pp.
77
89
. 0022-460X
3.
Esmailzadeh
,
E.
,
Jazar
,
G. N.
, and
Mehri
,
B.
, 1997, “
Existence of Periodic Solution for Beams With Harmonically Variable Length
,”
ASME J. Vibr. Acoust.
0739-3717,
119
(
3
), pp.
485
488
.
4.
Esmailzadeh
,
E.
, and
Jalili
,
N.
, 1998, “
Parametric Response of Cantilever Timoshenko Beams With Tip Mass Under Harmonic Support Motion
,”
Int. J. Non-Linear Mech.
0020-7462,
33
(
5
), pp.
765
781
.
5.
Esmailzadeh
,
E.
, and
Goodarzi
,
A.
, 2001, “
Stability Analysis of a CALM Floating Offshore Structure
,”
Int. J. Non-Linear Mech.
,
36
(
6
), pp.
917
926
. 0020-7462
6.
El-Dib
,
Y. O.
, 2001, “
Nonlinear Mathieu Equation and Coupled Resonance Mechanism
,”
Chaos, Solitons Fractals
0960-0779,
12
(
4
), pp.
705
720
.
7.
Ng
,
L.
, and
Rand
,
R.
, 2002, “
Bifurcations in a Mathieu Equation With Cubic Nonlinearities
,”
Chaos, Solitons Fractals
,
14
, pp.
173
181
. 0960-0779
8.
Abraham
,
G. T.
, and
Chatterjee
,
A.
, 2003, “
Approximate Asymptotic Solution for Nonlinear Mathieu Equation Using Harmonic Balance Based Averaging
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
347
365
.
9.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
,
Moehlis
,
J.
,
De Martini
,
B. E.
, and
Zhang
,
W.
, 2006, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
, pp.
797
829
. 0022-460X
10.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
11.
Rand
,
R. H.
, “
Lecture Notes on Non-Linear Vibrations
,” Version 45, http://tam.cornell.edu/randdocs/nlvibe45.pdfhttp://tam.cornell.edu/randdocs/nlvibe45.pdf.
12.
Esmailzadeh
,
E.
, and
Nakhaie-Jazar
,
G.
, 1997, “
Periodic Solution of a Mathieu-Duffing Type Equation
,”
Int. J. Non-Linear Mech.
,
32
(
5
), pp.
905
912
. 0020-7462
13.
Zounes
,
R. S.
, and
Rand
,
R. H.
, 2002, “
Subharmonic Resonance in the Non-Linear Mathieu Equation
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
43
73
.
14.
Byrd
,
P. F.
, and
Friedman
,
M. D.
, 1954,
Handbook of Elliptic Integrals for Engineers and Physicists
,
Springer-Verlag
,
Berlin
.
15.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1979,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Nauka
,
Moscow
.
16.
Cveticanin
,
L.
, and
Kovacic
,
I.
, 2007, “
Parametrically Excited Vibrations of an Oscillator With Strong Cubic Negative Non-Linearity
,”
J. Sound Vib.
,
304
(
1–2
), pp.
201
212
. 0022-460X
You do not currently have access to this content.