Finite deformation elastic-plastic analysis of plane-strain pure bending of a strain hardening sheet is presented. The general closed-form solution is proposed for an arbitrary isotropic hardening law assuming that the material is incompressible. Explicit relations are given for most popular conventional laws. The stage of unloading is included in the analysis to investigate the distribution of residual stresses and springback. The paper emphasizes the method of solution and the general qualitative features of elastic-plastic solutions rather than the study of the bending process for a specific material. In particular, it is shown that rigid-plastic solutions can be used to predict the bending moment at sufficiently large strains.

1.
Daxner
,
T.
,
Rammerstorfer
,
F. G.
,
Segurado
,
J.
, and
Pettermann
,
H. E.
, 2003, “
Numerical Simulations of the Creep Deformation of MMCs in 4-Point Bending Mode
,”
ASME J. Eng. Mater. Technol.
0094-4289,
125
(
1
), pp.
50
55
.
2.
Eason
,
G.
, 1960, “
The Elastic-Plastic Bending of a Compressible Curved Bar
,”
Appl. Sci. Res.
0003-6994,
9
, pp.
53
63
.
3.
Denton
,
A. A.
, 1966, “
Plane Strain Bending With Work Hardening
,”
J. Strain Anal.
0022-4758,
1
(
3
), pp.
196
203
.
4.
Wang
,
C.
,
Kinzel
,
G.
, and
Altan
,
T.
, 1993, “
Mathematical Modeling of Plane-Strain Bending of Sheet and Plate
,”
J. Mater. Process. Technol.
0924-0136,
39
, pp.
279
304
.
5.
Dadras
,
P.
, 2001, “
Plane Strain Elastic-Plastic Bending of a Strain-Hardening Curved Beams
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
39
56
.
6.
Chakrabarty
,
J.
,
Lee
,
W. B.
, and
Chan
,
K. C.
, 2001, “
An Exact Solution for the Elastic/Plastic Bending of Anisotropic Sheet Under Conditions of Plane Strain
,”
Int. J. Mech. Sci.
0020-7403,
43
, pp.
1871
1880
.
7.
Chan
,
K. C.
, and
Wang
,
S. H.
, 1999, “
Effect of Anisotropy on Springback of Integrated Circuit Leadframes
,”
J. Mater. Eng. Perform.
1059-9495,
8
, pp.
368
374
.
8.
Hsueh
,
C. H.
,
Lee
,
S.
, and
Chuang
,
T. J.
, 2003, “
An Alternative Method of Solving Multilayer Bending Problems
,”
ASME J. Appl. Mech.
0021-8936,
70
, pp.
151
154
.
9.
Rees
,
D. W. A.
, 2007, “
Descriptions of Reversed Yielding in Bending
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
221
, pp.
981
991
.
10.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Clarendon
,
Oxford
11.
Dadras
,
P.
, and
Majless
,
S. A.
, 1982, “
Plastic Bending of Work Hardening Materials
,”
ASME J. Eng. Ind.
0022-0817,
104
(
3
), pp.
224
230
.
12.
Verguts
,
H.
, and
Sowerby
,
R.
, 1975, “
The Pure Plastic Bending of Laminated Sheet metals
,”
Int. J. Mech. Sci.
0020-7403,
17
, pp.
31
51
.
13.
Tan
,
Z.
,
Persson
,
B.
, and
Magnusson
,
C.
, 1995, “
Plastic Bending of Anisotropic Sheet Metals
,”
Int. J. Mech. Sci.
0020-7403,
37
(
4
), pp.
405
421
.
14.
Alexandrov
,
S.
,
Kim
,
J. -H.
,
Chung
,
K.
, and
Kang
,
T. -J.
, 2006, “
An Alternative Approach to Analysis of Plane-Strain Pure Bending at Large Strains
,”
J. Strain Anal. Eng. Des.
0309-3247,
41
(
5
), pp.
397
410
.
15.
Lyamina
,
E. A.
, 2006, “
Plastic Bending of a Strip for a Yield Criterion Depending on the Mean Stress
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
47
, pp.
249
253
.
16.
Helsing
,
J.
, and
Jonsson
,
A.
, 2002, “
On the Accuracy of Benchmark Tables and Graphical Results in the Applied Mechanics Literature
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
88
90
.
17.
Gao
,
X. -L.
, 1994, “
Finite Deformation Elasto-Plastic Solution for the Pure Bending Problem of a Wide Plate of Elastic Linear-Hardening Material
,”
Int. J. Solids Struct.
0020-7683,
31
(
10
), pp.
1357
1376
.
18.
Xiao
,
H.
,
Bruhns
,
O. T.
, and
Meyers
,
A.
, 2006, “
Elastoplasticity Beyond Small Deformations
,”
Acta Mech.
0001-5970,
182
, pp.
31
111
.
19.
Rees
,
D. W. A.
, 2006,
Basic Engineering Plasticity
,
Butterworth-Heinemann
,
Oxford
.
You do not currently have access to this content.