This paper presents the complex Green function for the plane-strain problem of an infinite, isotropic elastic plane containing a circular hole with surface effects and subjected to a force applied at a point outside of the hole. The analysis is based on the Gurtin and Murdoch [1975, “A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal., 57, pp. 291–323; 1978, “Surface Stress in Solids,” Int. J. Solids Struct., 14, pp. 431–440] model, in which the surface of the hole possesses its own mechanical properties and surface tension. Systematic parametric studies are performed to investigate the effects of both surface elasticity and surface tension on the distribution of hoop stresses on the boundary of the hole and on a line that connects the point of the applied force and the center of the hole.

1.
Stakgold
,
I.
, 1979,
Green’s Functions and Boundary Value Problems
,
Wiley
,
New York
.
2.
Roach
,
G. F.
, 1982,
Green’s Functions
,
Cambridge University Press
,
Cambridge
.
3.
Melnikov
,
Y.
, 1994,
Green’s Functions in Applied Mechanics
,
Computational Mechanics
,
Southampton
.
4.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
5.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1978, “
Surface Stress in Solids
,”
Int. J. Solids Struct.
0020-7683,
14
, pp.
431
440
.
6.
He
,
L. H.
, and
Li
,
Z. R.
, 2006, “
Impact of Surface Stress On Stress Concentration
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6208
6219
.
7.
Mi
,
C.
, and
Kouris
,
D. A.
, 2006, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
1559-3959,
1
, pp.
763
791
.
8.
Sharma
,
P.
, and
Ganti
,
S.
, 2002, “
Interfacial Elasticity Corrections to Size-Dependent Strain-State of Embedded Quantum Dots
,”
Phys. Status Solidi B
0370-1972,
234
, pp.
R10
R12
.
9.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
663
671
.
10.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
, pp.
535
537
.
11.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
, 2007, “
Analytical Solution for Size-Dependent Elastic Field of a Nanoscale Circular Inhomogeneity
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
568
574
.
12.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
, 2007, “
Elastic Field of an Isotropic Matrix With a Nanoscale Elliptical Inhomogeneity
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
7988
8005
.
13.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
, 2008, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2928
2327
.
14.
Fang
,
Q. H.
, and
Liu
,
Y. W.
, 2006, “
Size-Dependent Interaction Between an Edge Dislocation and a Nanoscale Inhomogeneity With Interface Effects
,”
Acta Mater.
1359-6454,
54
, pp.
4213
4220
.
15.
Fang
,
Q. H.
,
Li
,
B.
, and
Liu
,
Y. W.
, 2007, “
Interaction Between Edge Dislocations and a Circular Hole With Surface Stress
,”
Phys. Status Solidi B
0370-1972,
244
, pp.
2576
2588
.
16.
He
,
L. H.
, and
Lim
,
C. W.
, 2006, “
Surface Green Function for a Soft Elastic Half-Space: Influence of Surface Stress
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
132
143
.
17.
Koguchi
,
H.
, 2008, “
Surface Green Function With Surface Stresses and Surface Elasticity Using Stroh’s Formalism
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061014
.
18.
Muskhelishvili
,
N. I.
, 1959,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen
.
19.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
, 2000,
Table of Integrals, Series and Products
,
Academic
,
San Diego, CA
.
20.
Denda
,
M.
, and
Kosaka
,
I.
, 1997, “
Dislocation and Point-Force-Based Approach to the Special Green’s Function BEM for Elliptic Hole and Crack Problems in Two Dimensions
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2857
2889
.
21.
Tang
,
S.
, and
Kitching
,
R.
, 1993, “
Elastoplastic Analysis of Two-Dimensional Problems With Hole by Boundary Element Method Using Complex Variables
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
577
586
.
22.
Mogilevskaya
,
S. G.
,
Rothenburg
,
L.
, and
Dusseault
,
M. B.
, 2000, “
Interaction Between a Circular Opening and Fractures Originating From Its Boundary in a Piece-Wise Homogeneous Plane
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
24
, pp.
947
970
.
23.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Ballarini
,
R.
, and
Stolarski
,
H. K.
, 2009, “
Interaction Between a Crack and a Circular Inhomogeneity With Interface Stiffness and Tension
,”
Int. J. Fract.
0376-9429,
159
, pp.
191
207
.
You do not currently have access to this content.