For one-dimensional quasi-crystals, the refined theory of thick plates is explicitly established from the general solution of quasi-crystals and the Luré method without employing ad hoc stress or deformation assumptions. For a homogeneous plate, the exact equations and solutions are derived, which consist of three parts: the biharmonic part, the shear part, and the transcendental part. For a nonhomogeneous plate, the exact governing differential equations and solutions under pure normal loadings and pure shear loadings, respectively, are obtained directly from the refined plate theory. In an illustrative example, explicit expressions of analytical solutions are obtained for torsion of a rectangular quasi-crystal plate.
Issue Section:
Research Papers
1.
Shechtman
, D.
, Blech
, I.
, Gratias
, D.
, and Cahn
, J. W.
, 1984, “Metallic Phase With Long-Range Orientational Order and No Translational Symmetry
,” Phys. Rev. Lett.
0031-9007, 53
(20
), pp. 1951
–1953
.2.
Levine
, D.
, and Steinhardt
, P. J.
, 1984, “Quasi-Crystals: A New Class of Ordered Structure
,” Phys. Rev. Lett.
0031-9007, 53
(26
), pp. 2477
–2480
.3.
Wollgarten
, M.
, Beyss
, M.
, Urban
, K.
, Liebertz
, H.
, and Koster
, U.
, 1993, “Direct Evidence for Plastic Deformation of Quasicrystals by Means of a Dislocation Mechanism
,” Phys. Rev. Lett.
0031-9007, 71
(4
), pp. 549
–552
.4.
Athanasiou
, N. S.
, Politis
, C.
, Spirlet
, J. C.
, Baskoutas
, S.
, and Kapaklis
, V.
, 2002, “The Significance of Valence Electron Concentration on the Formation Mechanism of Some Ternary Aluminum-Based Quasicrystals
,” Int. J. Mod. Phys. B
0217-9792, 16
(31
), pp. 4665
–4683
.5.
Park
, J. Y.
, Ogletree
, D. F.
, Salmeron
, M.
, Ribeiro
, R. A.
, Canfield
, P. C.
, Jenks
, C. J.
, and Thiel
, P. A.
, 2005, “High Frictional Anisotropy of Periodic and Aperiodic Directions on a Quasicrystal Surface
,” Science
0036-8075, 309
(5739
), pp. 1354
–1356
.6.
Park
, J. Y.
, Sacha
, G. M.
, Enachescu
, M.
, Ogletree
, D. F.
, Ribeiro
, R. A.
, Canfield
, P. C.
, Jenks
, C. J.
, Thiel
, P. A.
, Sáenz
, J. J.
, and Salmeron
, M.
, 2005, “Sensing Dipole Fields at Atomic Steps With Combined Scanning Tunneling and Force Microscopy
,” Phys. Rev. Lett.
0031-9007, 95
, p. 136802
.7.
Levine
, D.
, Lubensky
, T. C.
, Ostlund
, S.
, Ramaswamy
, S.
, Steinhardt
, P. J.
, and Toner
, J.
, 1985, “Elasticity and Dislocations in Pentagonal and Icosahedral Quasicrystals
,” Phys. Rev. Lett.
0031-9007, 54
(14
), pp. 1520
–1523
.8.
Socolar
, J. E. S.
, Lubensky
, T. C.
, and Steinhardt
, P. J.
, 1986, “Phonons, Phasons and Dislocations in Quasi-Crystals
,” Phys. Rev. B
0556-2805, 34
(5
), pp. 3345
–3360
.9.
Ding
, D. H.
, Yang
, W. G.
, Hu
, C. Z.
, and Wang
, R. H.
, 1993, “Generalized Elasticity Theory of Quasicrystals
,” Phys. Rev. B
0556-2805, 48
(10
), pp. 7003
–7010
.10.
Wang
, R. H.
, Yang
, W. G.
, Hu
, C. Z.
, and Ding
, D. H.
, 1997, “Point and Space Groups and Elastic Behaviours of One-Dimensional Quasicrystals
,” J. Phys.: Condens. Matter
0953-8984, 9
(11
), pp. 2411
–2422
.11.
Hu
, C.
, Wang
, R.
, and Ding
, D. -H.
, 2000, “Symmetry Groups, Physical Property Tensors, Elasticity and Dislocations in Quasicrystals
,” Rep. Prog. Phys.
0034-4885, 63
(1
), pp. 1
–39
.12.
Fan
, T. Y.
, and Mai
, Y. W.
, 2004, “Elasticity Theory, Fracture Mechanics, and Some Relevant Thermal Properties of Quasi-Crystalline Materials
,” Appl. Mech. Rev.
0003-6900, 57
, pp. 325
–343
.13.
Levine
, D.
, and Steinhardt
, P. J.
, 1986, “Quasicrystals. 1. Definition and Structure
,” Phys. Rev. B
0556-2805, 34
(2
), pp. 596
–616
.14.
Kramer
, P.
, and Neri
, R.
, 1984, “On Periodic and Non-Periodic Space Fillings Obtained by Projection
,” Acta Crystallogr., Sect. A: Found. Crystallogr.
0108-7673, 40
, pp. 580
–587
.15.
Mindlin
, R. D.
, 1951, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,” ASME J. Appl. Mech.
0021-8936, 18
, pp. 31
–38
.16.
Reissner
, E.
, 1945, “The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,” ASME J. Appl. Mech.
0021-8936, 12
, pp. 69
–77
.17.
Hencky
, H.
, 1947, “Über die Berücksichtigung der Schubverzerrung in ebenen Platten
,” Arch. Appl. Mech.
0939-1533, 16
, pp. 72
–76
.18.
Rychter
, Z.
, 1993, “Generalized Displacements and the Accuracy of Classical Plate-Theory
,” Int. J. Solids Struct.
0020-7683, 30
(1
), pp. 129
–136
.19.
Ladevèze
, P.
, 2002, “The Exact Theory of Plate Bending
,” J. Elast.
0374-3535, 68
(1–3
), pp. 37
–71
.20.
Kirchhoff
, G. R.
, 1850, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe
,” J. Reine Angew. Math.
0075-4102, 40
, pp. 51
–58
.21.
Cheng
, S.
, 1979, “Elasticity Theory of Plates and a Refined Theory
,” ASME J. Appl. Mech.
0021-8936, 46
, pp. 644
–650
.22.
Barrett
, K. E.
, and Ellis
, S.
, 1988, “An Exact Theory of Elastic Plates
,” Int. J. Solids Struct.
0020-7683, 24
(9
), pp. 859
–880
.23.
Wang
, F. -Y.
, 1990, “Two-Dimensional Theories Deduced From Three-Dimensional Theory for a Transversely Isotropic Body—I. Plate Problems
,” Int. J. Solids Struct.
0020-7683, 26
(4
), pp. 455
–470
.24.
Wang
, W.
, and Shi
, M. X.
, 1997, “Thick Plate Theory Based on General Solutions of Elasticity
,” Acta Mech.
0001-5970, 123
(1–4
), pp. 27
–36
.25.
Gao
, Y.
, and Zhao
, B. S.
, 2007, “The Refined Theory of Thermoelastic Rectangular Plates
,” J. Therm. Stresses
0149-5739, 30
(5
), pp. 505
–520
.26.
Gao
, Y.
, and Wang
, M. Z.
, 2004, “The Refined Theory of Magnetoelastic Rectangular Beams
,” Acta Mech.
0001-5970, 173
(1–4
), pp. 147
–161
.27.
Gao
, Y.
, and Wang
, M. Z.
, 2006, “The Refined Theory of Deep Rectangular Beams Based on General Solutions of Elasticity
,” Sci. China, Ser. G
1672-1799, 49
(3
), pp. 291
–303
.28.
Gao
, Y.
, Wang
, M. Z.
, and Zhao
, B. S.
, 2007, “The Refined Theory of Rectangular Curved Beams
,” Acta Mech.
0001-5970, 189
(3–4
), pp. 141
–150
.29.
Luré
, A. I.
, 1964, Three-Dimensional Problems of the Theory of Elasticity
, Interscience
, New York
.30.
Gao
, Y.
, Xu
, S. P.
, and Zhao
, B. S.
, 2008, “A Theory of General Solutions of 3D Problems in 1D Hexagonal Quasicrystals
,” Phys. Scr.
0031-8949, 77
(1
), p. 015601
.31.
Zhao
, B. -s.
, and Wang
, M. -z.
, 2005, “Equivalence of Refined Theory and Decomposed Theorem of an Elastic Plate
,” Appl. Math. Mech.
0253-4827, 26
(4
), pp. 486
–494
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.