For one-dimensional quasi-crystals, the refined theory of thick plates is explicitly established from the general solution of quasi-crystals and the Luré method without employing ad hoc stress or deformation assumptions. For a homogeneous plate, the exact equations and solutions are derived, which consist of three parts: the biharmonic part, the shear part, and the transcendental part. For a nonhomogeneous plate, the exact governing differential equations and solutions under pure normal loadings and pure shear loadings, respectively, are obtained directly from the refined plate theory. In an illustrative example, explicit expressions of analytical solutions are obtained for torsion of a rectangular quasi-crystal plate.

1.
Shechtman
,
D.
,
Blech
,
I.
,
Gratias
,
D.
, and
Cahn
,
J. W.
, 1984, “
Metallic Phase With Long-Range Orientational Order and No Translational Symmetry
,”
Phys. Rev. Lett.
0031-9007,
53
(
20
), pp.
1951
1953
.
2.
Levine
,
D.
, and
Steinhardt
,
P. J.
, 1984, “
Quasi-Crystals: A New Class of Ordered Structure
,”
Phys. Rev. Lett.
0031-9007,
53
(
26
), pp.
2477
2480
.
3.
Wollgarten
,
M.
,
Beyss
,
M.
,
Urban
,
K.
,
Liebertz
,
H.
, and
Koster
,
U.
, 1993, “
Direct Evidence for Plastic Deformation of Quasicrystals by Means of a Dislocation Mechanism
,”
Phys. Rev. Lett.
0031-9007,
71
(
4
), pp.
549
552
.
4.
Athanasiou
,
N. S.
,
Politis
,
C.
,
Spirlet
,
J. C.
,
Baskoutas
,
S.
, and
Kapaklis
,
V.
, 2002, “
The Significance of Valence Electron Concentration on the Formation Mechanism of Some Ternary Aluminum-Based Quasicrystals
,”
Int. J. Mod. Phys. B
0217-9792,
16
(
31
), pp.
4665
4683
.
5.
Park
,
J. Y.
,
Ogletree
,
D. F.
,
Salmeron
,
M.
,
Ribeiro
,
R. A.
,
Canfield
,
P. C.
,
Jenks
,
C. J.
, and
Thiel
,
P. A.
, 2005, “
High Frictional Anisotropy of Periodic and Aperiodic Directions on a Quasicrystal Surface
,”
Science
0036-8075,
309
(
5739
), pp.
1354
1356
.
6.
Park
,
J. Y.
,
Sacha
,
G. M.
,
Enachescu
,
M.
,
Ogletree
,
D. F.
,
Ribeiro
,
R. A.
,
Canfield
,
P. C.
,
Jenks
,
C. J.
,
Thiel
,
P. A.
,
Sáenz
,
J. J.
, and
Salmeron
,
M.
, 2005, “
Sensing Dipole Fields at Atomic Steps With Combined Scanning Tunneling and Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
136802
.
7.
Levine
,
D.
,
Lubensky
,
T. C.
,
Ostlund
,
S.
,
Ramaswamy
,
S.
,
Steinhardt
,
P. J.
, and
Toner
,
J.
, 1985, “
Elasticity and Dislocations in Pentagonal and Icosahedral Quasicrystals
,”
Phys. Rev. Lett.
0031-9007,
54
(
14
), pp.
1520
1523
.
8.
Socolar
,
J. E. S.
,
Lubensky
,
T. C.
, and
Steinhardt
,
P. J.
, 1986, “
Phonons, Phasons and Dislocations in Quasi-Crystals
,”
Phys. Rev. B
0556-2805,
34
(
5
), pp.
3345
3360
.
9.
Ding
,
D. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Wang
,
R. H.
, 1993, “
Generalized Elasticity Theory of Quasicrystals
,”
Phys. Rev. B
0556-2805,
48
(
10
), pp.
7003
7010
.
10.
Wang
,
R. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Ding
,
D. H.
, 1997, “
Point and Space Groups and Elastic Behaviours of One-Dimensional Quasicrystals
,”
J. Phys.: Condens. Matter
0953-8984,
9
(
11
), pp.
2411
2422
.
11.
Hu
,
C.
,
Wang
,
R.
, and
Ding
,
D. -H.
, 2000, “
Symmetry Groups, Physical Property Tensors, Elasticity and Dislocations in Quasicrystals
,”
Rep. Prog. Phys.
0034-4885,
63
(
1
), pp.
1
39
.
12.
Fan
,
T. Y.
, and
Mai
,
Y. W.
, 2004, “
Elasticity Theory, Fracture Mechanics, and Some Relevant Thermal Properties of Quasi-Crystalline Materials
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
325
343
.
13.
Levine
,
D.
, and
Steinhardt
,
P. J.
, 1986, “
Quasicrystals. 1. Definition and Structure
,”
Phys. Rev. B
0556-2805,
34
(
2
), pp.
596
616
.
14.
Kramer
,
P.
, and
Neri
,
R.
, 1984, “
On Periodic and Non-Periodic Space Fillings Obtained by Projection
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
0108-7673,
40
, pp.
580
587
.
15.
Mindlin
,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
31
38
.
16.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
69
77
.
17.
Hencky
,
H.
, 1947, “
Über die Berücksichtigung der Schubverzerrung in ebenen Platten
,”
Arch. Appl. Mech.
0939-1533,
16
, pp.
72
76
.
18.
Rychter
,
Z.
, 1993, “
Generalized Displacements and the Accuracy of Classical Plate-Theory
,”
Int. J. Solids Struct.
0020-7683,
30
(
1
), pp.
129
136
.
19.
Ladevèze
,
P.
, 2002, “
The Exact Theory of Plate Bending
,”
J. Elast.
0374-3535,
68
(
1–3
), pp.
37
71
.
20.
Kirchhoff
,
G. R.
, 1850, “
Über das Gleichgewicht und die Bewegung einer elastischen Scheibe
,”
J. Reine Angew. Math.
0075-4102,
40
, pp.
51
58
.
21.
Cheng
,
S.
, 1979, “
Elasticity Theory of Plates and a Refined Theory
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
644
650
.
22.
Barrett
,
K. E.
, and
Ellis
,
S.
, 1988, “
An Exact Theory of Elastic Plates
,”
Int. J. Solids Struct.
0020-7683,
24
(
9
), pp.
859
880
.
23.
Wang
,
F. -Y.
, 1990, “
Two-Dimensional Theories Deduced From Three-Dimensional Theory for a Transversely Isotropic Body—I. Plate Problems
,”
Int. J. Solids Struct.
0020-7683,
26
(
4
), pp.
455
470
.
24.
Wang
,
W.
, and
Shi
,
M. X.
, 1997, “
Thick Plate Theory Based on General Solutions of Elasticity
,”
Acta Mech.
0001-5970,
123
(
1–4
), pp.
27
36
.
25.
Gao
,
Y.
, and
Zhao
,
B. S.
, 2007, “
The Refined Theory of Thermoelastic Rectangular Plates
,”
J. Therm. Stresses
0149-5739,
30
(
5
), pp.
505
520
.
26.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2004, “
The Refined Theory of Magnetoelastic Rectangular Beams
,”
Acta Mech.
0001-5970,
173
(
1–4
), pp.
147
161
.
27.
Gao
,
Y.
, and
Wang
,
M. Z.
, 2006, “
The Refined Theory of Deep Rectangular Beams Based on General Solutions of Elasticity
,”
Sci. China, Ser. G
1672-1799,
49
(
3
), pp.
291
303
.
28.
Gao
,
Y.
,
Wang
,
M. Z.
, and
Zhao
,
B. S.
, 2007, “
The Refined Theory of Rectangular Curved Beams
,”
Acta Mech.
0001-5970,
189
(
3–4
), pp.
141
150
.
29.
Luré
,
A. I.
, 1964,
Three-Dimensional Problems of the Theory of Elasticity
,
Interscience
,
New York
.
30.
Gao
,
Y.
,
Xu
,
S. P.
, and
Zhao
,
B. S.
, 2008, “
A Theory of General Solutions of 3D Problems in 1D Hexagonal Quasicrystals
,”
Phys. Scr.
0031-8949,
77
(
1
), p.
015601
.
31.
Zhao
,
B. -s.
, and
Wang
,
M. -z.
, 2005, “
Equivalence of Refined Theory and Decomposed Theorem of an Elastic Plate
,”
Appl. Math. Mech.
0253-4827,
26
(
4
), pp.
486
494
.
You do not currently have access to this content.