In this paper, the thermoelastic problem of a semi-infinite microstretch homogeneous isotropic body is investigated in the context of different theories of generalized thermoelasticity. The surface of the semi-infinite body is subjected to a zonal time-dependent heat shock. The problem is solved by using a finite element method. The results, regarding temperature, stresses, displacements, microrotation, and microstretch, are presented graphically. Comparisons are made among the results derived from different generalized thermoelastic theories to show that the micropolar effect has a slight influence on the results while the microstretch effect has a great influence.

1.
Eringen
,
A. C.
, 1966, “
A Unified Theory of Thermomechanical Materials
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
4
, pp. 179–202.
2.
Eringen
,
A. C.
, 1965, “
Linear Theory of Micropolar Elasticity
,” ONR, Technical Report No. 29.
3.
Eringen
,
A. C.
, 1966, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
JOMMAN 0095-9057,
15
, pp. 909–923.
4.
Eringen
,
A. C.
, 1970,
Foundation of Micropolar Thermoelasticity
(CISM Courses and Lectures, Vol.
23
),
Springer-Verlag
,
Vienna
and New York.
5.
Nowacki
,
W.
, 1966, “
Couple Stresses in the Theory of Thermoelasticity I
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
BAPTA9 0001-4125,
14
, pp. 129–138.
6.
Nowacki
,
W.
, 1966, “
Couple Stresses in the Theory of Thermoelasticity II
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
BAPTA9 0001-4125,
14
, pp. 263–272.
7.
Nowacki
,
W.
, 1966, “
Couple Stresses in the Theory of Thermoelasticity III
,”
Bull. Acad. Pol. Sci., Ser. Sci. Tech.
BAPTA9 0001-4125,
14
(
8
), pp. 801–809.
8.
Nowacki
,
W.
, and
Olszak
,
W.
, eds., 1974,
Micropolar Thermoelasticity
(CISM Courses and Lectures, Vol.
151
),
Udine, Springer-Verlag
,
Vienna
.
9.
Eringen
,
A. C.
, 1971, “
Micropolar Elastic Solids With Stretch
,” Prof. Dr. Mustafa Inan Anisina, Ari Kitabevi Matbassi, Istanbul, pp. 1–18.
10.
Eringen
,
A. C.
, 1990, “
Theory of Thermo-Microstretch Elastic Solids
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
28
, pp. 1291–1301.
11.
Singh
,
B.
, and
Kumar
,
R.
, 1998, “
Wave Propagation in a Generalized Thermo-Microstretch Elastic Solid
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
36
, pp. 891–912.
12.
Kumar
,
R.
, and
Deswal
,
S.
, 2002, “
Wave Propagation Through Cylindrical Bore Contained in a Microstretch Elastic Medium
,”
J. Sound Vib.
JSVIAG 0022-460X,
250
, pp. 711–722.
13.
Kumar
,
R.
,
Singh
,
R.
, and
Chadha
,
T. K.
, 2002, “
Axisymmetric Problem in Microstretch Elastic Solid
,”
Indian Journal of Mathematics
,
44
, pp. 147–164.
14.
Tomar
,
S. K.
,
Kumar
,
R.
, and
Kaushik
,
V. P.
, 1998, “
Wave Propagation of Micropolar Elastic Medium With Stretch
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
36
, pp. 683–698.
15.
Singh
,
B.
, 2002, “
Reflection of Plane Waves From Free Surface of a Microstretch Elastic Solid
,”
Journal of Earth System Science
,
111
, pp. 29–37.
16.
Kumar
,
R.
, and
Partap
,
G.
, 2005, “
Reflection of Plane Waves in a Heat Flux Dependent Microstretch Thermoelastic Solid Half Space
,”
International Journal of Applied Mechanics and Engineering
AMENFE 1425-1655,
10
(
2
), pp. 253–266.
17.
Tomar
,
S. K.
, and
Garg
,
M.
, 2005, “
Reflection and Transmission of Waves From a Plane Interface Between Two Microstretch Solid Half Spaces
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
43
, pp. 139–169.
18.
Singh
,
B.
, 2001, “
Reflection and Refraction of Plane Waves at a Liquid/Thermomicrostretch Elastic Solid Interface
,”
Int. J. Eng. Sci.
IJESAN 0020-7225,
39
, pp. 583–598.
19.
Boit
,
M.
, 1956, “
Thermoelasticity and Irreversible Thermo-Dynamics
,”
J. Appl. Phys.
JAPIAU 0021-8979,
27
, pp. 240–253.
20.
Lord
,
H. W.
, and
Shulman
,
Y.
, 1967, “
A Generalized Dynamical Theory of Thermoelasticity
,”
J. Mech. Phys. Solids
JMPSA8 0022-5096,
15
, pp. 299–309.
21.
Green
,
A. E.
, and
Lindsay
,
F. A.
, 1972, “
Thermoelasticity
,”
J. Elast.
JELSAY 0374-3535,
2
, pp. 1–7.
22.
Ignaczak
,
J.
, and
Ostoja-Starzewski
,
M.
, 2009,
Thermoelasticity With Finite Wave Speeds
,
Oxford University Press
,
Oxford
.
23.
Othman
,
M. I. A.
,
Lotfy
,
Kh.
, and
Farouk
,
R. M.
, 2010, “
Generalized Thermo-Microstretch Elastic Medium With Temperature Dependent Properties for Different Theories
,”
Eng. Anal. Boundary Elem.
EABAEL 0955-7997,
34
(
3
), pp. 229–237.
24.
Othman
,
M. I. A.
, and
Lotfy
,
Kh.
, 2010, “
On the Plane Waves of Generalized Thermo-Microstretch Elastic Half-Space Under Three Theories
,”
Int. Commun. Heat Mass Transfer
IHMTDL 0735-1933,
37
(
2
), pp. 192–200.
25.
Tian
,
X. G.
,
Shen
,
Y. P.
,
Chen
,
C. Q.
, and
He
,
T. H.
, 2006, “
A Direct Finite Element Method Study of Generalized Thermoelastic Problems
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
43
, pp. 2050–2063.
26.
Tian
,
X. G.
, and
Shen
,
Y. P.
, 2005, “
Study on Generalized Magneto-Thermoelastic Problems by FEM in Time Domain
,”
Acta Mech. Sin.
LHHPAE 0459-1879,
21
, pp. 380–387.
You do not currently have access to this content.