Load-bearing biological materials such as bone, teeth, and nacre have acquired some interesting mechanical properties through evolution, one of which is the tolerance of cracklike flaws incurred during tissue function, growth, repair, and remodeling. While numerous studies in the literature have addressed flaw tolerance in elastic structures, so far there has been little investigation of this issue in time-dependent, viscoelastic systems, in spite of its importance to biological materials. In this paper, we investigate flaw tolerance in a viscoelastic strip under tension and derive the conditions under which a pre-existing center crack, irrespective of its size, will not grow before the material fails under uniform rupture. The analysis is based on the Griffith and cohesive zone models of crack growth in a viscoelastic material, taking into account the effects of the loading rate along with the fracture energy, Young’s modulus, and theoretical strength of material.

References

1.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
, pp.
5597
5600
.10.1073/pnas.0631609100
2.
Persson
,
B. N. J.
,
2003
, “
Nanoadhesion
,”
Wear
,
254
, pp.
832
834
.10.1016/S0043-1648(03)00233-3
3.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Kim
,
J.
,
2004
, “
Design of Biomimetic Fibrillar Interface: 1. Making Contact
,”
J. R. Soc. Interface
,
1
, pp.
23
33
.10.1098/rsif.2004.0004
4.
Hui
,
C. Y.
,
Glassmaker
,
N. J.
,
Tang
,
T.
, and
Jagota
,
A.
,
2004
, “
Design of Biomimetic Fibrillar Interface: 2. Mechanics of Enhanced Adhesion
,”
J. R. Soc. Interface
,
1
, pp.
35
48
.10.1098/rsif.2004.0005
5.
Gao
,
H.
,
Wang
,
X.
,
Yao
,
H.
,
Gorb
,
S.
, and
Arzt
,
E.
,
2005
, “
Mechanics of Hierarchical Adhesion Structures of Geckos
,”
Mech. Mater.
,
37
, pp.
275
285
.10.1016/j.mechmat.2004.03.008
6.
Gao
,
H.
, and
Chen
,
S.
,
2005
, “
Flaw Tolerance in a Thin Strip Under Tension
,”
ASME J. Appl. Mech.
,
72
, pp.
732
737
.10.1115/1.1988348
7.
Northen
,
M. T.
, and
Turner
,
K. L.
,
2005
, “
A Batch Fabricated Biomimetic Dry Adhesive
,”
Nanotechnology
,
16
, pp.
1159
1166
.10.1088/0957-4484/16/8/030
8.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fract.
,
138
, pp.
101
137
.10.1007/s10704-006-7156-4
9.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(2)
, pp.
100
104
.10.1016/0022-5096(60)90013-2
10.
Bilby
,
B. A.
,
Cottrell
,
A. H.
, and
Swinden
,
K. H.
,
1963
, “
The Spread of Plastic Yield From a Notch
,”
Proc. R. Soc. London, Ser. A
,
272
, pp.
304
314
.10.1098/rspa.1963.0055
11.
Bazant
,
Z. P.
,
1976
, “
Instability, Ductility and Size Effect in Strain-Softening Concrete
,”
J. Eng. Mech.
,
102
, pp.
331
344
.
12.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
, pp.
773
782
.10.1016/0008-8846(76)90007-7
13.
Kendall
,
K.
,
1978
, “
Complexities of Compression Failure
,”
Proc. R. Soc. London, Ser. A
,
361
, pp.
245
263
.10.1098/rspa.1978.0101
14.
Karihaloo
,
B. L.
,
1979
, “
A Note on Complexities of Compression Failure
,”
Proc. R. Soc. London, Ser. A
,
368
, pp.
483
493
.10.1098/rspa.1979.0142
15.
Rice
,
J. R.
,
1980
, “
The Mechanics of Earthquake Rupture
,”
International School of Physics “E. Fermi,” Course 78, 1979
,
Italian Physical Society/North Holland
,
Amsterdam
.
16.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
1983
, “
Finite Element Modeling of Crack Band Propagation
,”
J. Struct. Eng.
,
109
, pp.
69
92
.10.1061/(ASCE)0733-9445(1983)109:1(69)
17.
Barenblatt
,
G. I.
,
1985
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
18.
Bao
,
G.
, and
Suo
,
Z.
,
1992
, “
Remarks on Crack-Bridging Concepts
,”
Appl. Mech. Rev.
,
45
, pp.
355
366
.10.1115/1.3119764
19.
Cox
,
B. N.
, and
Marshall
,
D. B.
,
1994
, “
Concepts for Bridged Cracks in Fracture and Fatigue
,”
Acta Metall. Mater.
,
42
, pp.
341
363
.10.1016/0956-7151(94)90492-8
20.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC
,
Boca Raton, FL
.
21.
Massabo
,
R.
, and
Cox
,
B. N.
,
1999
, “
Concepts for Bridged Mode II Delamination Cracks
,”
J. Mech. Phys. Solids
,
47
, pp.
1265
1300
.10.1016/S0022-5096(98)00107-0
22.
Mulmule
,
S. V.
, and
Dempsey
,
J. P.
,
2000
, “
LEFM Size Requirement for the Fracture Testing of Sea Ice
,”
Int. J. Fract.
,
102
, pp.
85
98
.10.1023/A:1007603428907
23.
Drugan
,
W. J.
,
2001
, “
Dynamic Fragmentation of Brittle Materials: Analytical Mechanics-Based Models
,”
J. Mech. Phys. Solids
,
49
, pp.
1181
1208
.10.1016/S0022-5096(01)00002-3
24.
Gao
,
H.
,
Ji
,
B.
,
Buehler
,
M. J.
, and
Yao
,
H.
,
2004
, “
Flaw Tolerant Bulk and Surface Nanostructures of Biological Systems
,”
Mech. Chem. Biosyst.
,
1
(1)
, pp.
37
52
.10.3970/mcb.2004.001.037
25.
Gao
,
H.
, and
Yao
,
H.
,
2004
, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
, pp.
7851
7856
.10.1073/pnas.0400757101
26.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
, pp.
1963
1990
.10.1016/j.jmps.2004.03.006
27.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
A Study of Fracture Mechanisms in Biological Nano-Composites via the Virtual Internal Bond Model
,”
Mater. Sci. Eng. A
,
366
, pp.
96
103
.10.1016/j.msea.2003.08.121
28.
Buehler
,
M. J.
,
Yao
,
H.
,
Ji
,
B.
, and
Gao
,
H.
,
2006
, “
Cracking and Adhesion at Small Scales: Atomistic and Continuum Studies of Flaw Tolerant Nanostructures
,”
Modell. Simul. Mater. Sci. Eng.
,
14
, pp.
799
816
.10.1088/0965-0393/14/5/001
29.
Yao
,
H.
, and
Gao
,
H.
,
2006
, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom-Up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
,
54
, pp.
1120
1146
.10.1016/j.jmps.2006.01.002
30.
Chen
,
S.
, and
Soh
,
A.
,
2008
, “
Tuning the Geometrical Parameters of Biomimetic Fibrillar Structures to Enhance Adhesion
,”
J. R. Soc. Interface
,
5
, pp.
373
382
.10.1098/rsif.2007.1121
31.
Chen
,
S.
,
Xu.
,
G.
, and
Soh
,
A.
,
2010
, “
Size-Dependent Adhesion Strength of a Single Viscoelastic Fiber
,”
Tribol. Lett.
,
37
, pp.
375
379
.10.1007/s11249-009-9532-5
32.
Chen
,
S.
, and
Chen
,
P.
,
2010
, “
Nanoadhesion of a Power-Law Graded Elastic Material
,”
Chin. Phys. Lett.
,
27
(
10
), p.
108102
.10.1088/0256-307X/27/10/108102
33.
Kumar
,
S.
,
Haque
,
M. A.
, and
Gao
,
H.
,
2009
, “
Notch Insensitive Fracture in Nanoscale Thin Films
,”
Appl. Phys. Lett.
,
94
, p.
253103
.10.1063/1.3154559
34.
Kumar
,
S.
,
Li
,
X. Y.
,
Haque
,
A.
, and
Gao
,
H. J.
,
2011
, “
Is Stress Concentration Relevant for Nanocrystalline Metals?
,”
Nano Lett.
,
11
, pp.
2510
2516
.10.1021/nl201083t
35.
Giesa
,
T.
,
Arslan
,
M.
,
Pugno
,
N. M.
, and
Buehler
,
M. J.
,
2011
, “
Nanoconfinement of Spider Silk Fibrils Begets Superior Strength, Extensibility, and Toughness
,”
Nano Lett.
,
11
(
11
), pp.
5038
5046
.10.1021/nl203108t
36.
Abou Neel
,
E. A.
,
Salih
,
V.
,
Revell
,
P. A.
, and
Young
,
A. M.
,
2012
, “
Viscoelastic and Biological Performance of Low-Modulus, Reactive Calcium Phosphate-Filled, Degradable, Polymetric Bone Adhesive
,”
Acta Biomater.
,
8
, pp.
313
320
.10.1016/j.actbio.2011.08.008
37.
Deymier-Black
,
A. C.
,
Yuan
,
F.
,
Singhal
,
A.
,
Almer
,
J. D.
,
Brinson
,
L. C.
, and
Dunand
,
D. C.
,
2012
, “
Evolution of Load Transfer Between Hydroxyapatite and Collagen During Creep Deformation of Bone
,”
Acta Biomater.
,
8
, pp.
253
261
.10.1016/j.actbio.2011.08.014
38.
Mano
,
J. F.
,
2005
, “
Viscoelastic Properties of Bone: Mechanical Spectroscopy Studies on a Chicken Model
,”
Mater. Sci. Eng., C
,
25
, pp.
145
152
.10.1016/j.msec.2005.01.017
39.
Fung
,
Y. C.
,
1983
,
Biomechanics
,
Science Press
,
Beijing (in Chinese)
.
40.
Nuismer
,
R. J.
,
1974
, “
Governing Equation for Quasi-Static Crack Growth in Linearly Viscoelastic Materials
,”
ASME J. Appl. Mech.
,
41
, pp.
631
634
.10.1115/1.3423361
41.
Gurtin
,
M. E.
, and
Sternberg
,
E.
,
1962
, “
On the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
291
356
.10.1007/BF00253942
42.
Christensen
,
M. E.
,
1982
,
Theory of Viscoelasticity
,
Academic
,
New York
.
43.
Gao
,
Q.
,
Lin
,
S.
, and
Yang
,
X. J.
,
2007
, “
Description of Non-Linear Creep Constitutive Relation for Viscoelastic Butyl Rubber
,”
Chin. J. Appl. Mech.
,
24
, pp.
386
390
(in Chinese).
44.
Graham
,
G. A. C.
,
1968
, “
Correspondence Principle of Linear Viscoelasticity Theory for Mixed Boundary Value Problems Involving Time-Dependent Boundary Regions
,”
Q. Appl. Math.
,
26
, pp.
167
174
.
45.
Graham
,
G. A. C.
, and
Sabin
,
G. C. W.
,
1973
, “
Correspondence Principle of Linear Viscoelasticity for Problems That Involve Time-Dependent Regions
,”
Int. J. Eng. Sci.
,
11
, pp.
123
140
.10.1016/0020-7225(73)90074-8
46.
Guo
,
X.
, and
Gao
,
H.
,
2005
, “
Bio-Inspired Material Design and Optimization
,”
IUTAM Symposium on Topological Design Optimization of Structures
,
Machines and Materials—Status and Perspectives
,
Rungstedgaard, Copenhagen, Denmark
, October 26–29.
47.
Kauffmann
,
F.
,
Ji
,
B.
,
Dehm
,
G.
,
Gao
,
H.
, and
Arzt
,
E.
,
2005
, “
A Quantitative Study of the Hardness in a Superhard Nanocrystalline Titanium Nitride/Silicon Nitride Coating
,”
Scr. Mater.
,
52
, pp.
1269
1274
.10.1016/j.scriptamat.2005.02.024
48.
Lakes
,
R. S.
, and
Katz
,
J. L.
,
1979
, “
Viscoelastic Properties of Wet Cortical Bone—II: Relaxation Mechanisms
,”
J. Biomech.
,
12
(9)
, pp.
679
687
.10.1016/0021-9290(79)90017-4
49.
Sasaki
,
N.
,
Nakayama
,
Y.
,
Yoshikawa
,
M.
, and
Enyo
,
A.
,
1993
, “
Stress Relaxation Function of Bone Collagen
,”
J. Biomech.
,
26
(12)
, pp.
1369
1376
.10.1016/0021-9290(93)90088-V
50.
Gao
,
H.
, and
Klein
,
P.
,
1998
, “
Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds
,”
J. Mech. Phys. Solids
,
46
, pp.
187
218
.10.1016/S0022-5096(97)00047-1
51.
Smith
,
B. L.
,
Schaeffer
,
T. E.
,
Viani
,
M.
,
Thompson
,
J. B.
,
Frederick
,
N. A.
,
Kindt
,
J. H.
,
Belcher
,
A.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
1999
, “
Molecular Mechanistic Origin of the Toughness of Natural Adhesive, Fibres and Composites
,”
Nature (London)
,
399
, pp.
761
763
.10.1038/21607
52.
Thompson
,
J. B.
,
Kindt
,
J. H.
,
Drake
,
B.
,
Hansma
,
H. G.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
, “
Bone Indentation Recovery Time Correlates With Bone Reforming Time
,”
Nature (London)
,
414
, pp.
773
776
.10.1038/414773a
53.
de Gennes
,
P. G.
,
1996
, “
Soft Adhesives
,”
Langmuir
,
12
, pp.
4497
4500
.10.1021/la950886y
54.
Bilby
,
B. A.
, and
Eshelby
J. D.
,
1968
,
Fracture
,
Academic
,
New York
.
You do not currently have access to this content.