In this study, the nonlinear equation of motion of the beam on the elastic foundation is obtained via the Newton's second law of motion, and its free vibration nature is investigated. Considering the inextensional condition, the planar model of the beam accounting for the effects of the rotary inertia is derived. Then, the linear vibration and nonlinear vibration of the beam on the elastic foundation are examined. It is shown that the cut-off frequency can be observed in the frequency spectrum of the beam response. The effects of the rotary inertia on the natural frequencies are systematically investigated. Finally, the frequency differences, due to the different foundation models, and the possible modal interaction of the beam are discussed.

References

1.
Wang
,
Y. H.
,
Tham
,
L. G.
, and
Cheung
,
Y. K.
,
2005
, “
Beams and Plates on Elastic Foundations: A Review
,”
Prog. Struct. Eng. Mater.
,
7
, pp.
174
182
.10.1002/pse.202
2.
Cheng
,
F. Y.
, and
Pantelides
,
C. P.
,
1988
, “
Dynamic Timoshenko Beam-Column on Elastic Media
,”
J. Struct. Eng.
,
114
, pp.
1524
1550
.10.1061/(ASCE)0733-9445(1988)114:7(1524)
3.
Lai
,
Y. C.
,
Ting
,
B. Y.
,
Lee
,
W. S.
, and
Becker
,
B. R.
,
1992
, “
Dynamic Response of Beams on Elastic Foundation
,”
J. Struct. Eng.
,
118
, pp.
853
858
.10.1061/(ASCE)0733-9445(1992)118:3(853)
4.
Thambiratnam
,
D.
, and
Zhuge
,
Y.
,
1996
, “
Free Vibration Analysis of Beams on Elastic Foundation
,”
Comput. Struct.
,
60
, pp.
971
980
.10.1016/0045-7949(96)00053-3
5.
De Rosa
,
M. A.
, and
Maurizi
,
M. J.
,
1998
, “
The Influence of Concentrated Masses and Pasternak Soil on the Free Vibration of Euler Beams-Exact Solution
,”
J. Sound Vib.
,
212
, pp.
573
581
.10.1006/jsvi.1997.1424
6.
Valsangkar
,
A. J.
, and
Pradhanang
,
R.
,
1988
, “
Vibrations of Beam-Columns on Two-Parameter Elastic Foundation
,”
Earthquake Eng. Struct. Dyn.
,
16
, pp.
217
225
.10.1002/eqe.4290160205
7.
Ayvaz
,
Y.
, and
Özgan
,
K.
,
2002
, “
Application of Modified Vlasov Model to Free Vibration Analysis of Beams Resting on Elastic Foundations
,”
J. Sound Vib.
,
255
, pp.
111
127
.10.1006/jsvi.2001.4143
8.
Liang
,
R. Y.
, and
Zhu
,
J. X.
,
1995
, “
Dynamic Analysis of Infinite Beam on Modified Vlasov Subgrade
,”
J. Transp. Eng.
,
121
, pp.
434
442
.10.1061/(ASCE)0733-947X(1995)121:5(434)
9.
Morfidis
,
K.
,
2010
, “
Vibration of Timoshenko Beams on Three-Parameter Elastic Foundation
,”
Comput. Structures
,
88
, pp.
294
308
.10.1016/j.compstruc.2009.11.001
10.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley-Interscience
,
New York
.
11.
Vlasov
,
V. Z.
, and
Leont'ev
,
U. N.
,
1966
,
Beams, Plates and Shells on Elastic Foundations (translated from Russian)
,
Israel Program for Scientific Translation
,
Jerusalem, Israel
.
12.
Kerr
,
A. D.
,
1965
, “
A Study of a New Foundation Model
,”
Acta Mech.
,
1
pp.
135
147
.10.1007/BF01174308
13.
Perkins
,
N. C.
, and
Mote
, Jr.,
C. D.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
,
106
, pp.
451
463
.10.1016/0022-460X(86)90191-4
14.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1994
, “
An Energy-Based Formulation for Computing Nonlinear Normal Modes in Undamped Continuous Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
332
340
.10.1115/1.2930433
15.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal Modes of Vibration for Non-Linear Continuous Systems
,”
J. Sound Vib.
,
169
, pp.
319
347
.10.1006/jsvi.1994.1021
16.
Nayfeh
,
A. H.
, and
Nayfeh
,
S. A.
,
1995
, “
Nonlinear Normal Modes of a Continuous System With Quadratic Nonlinearities
,”
ASME J. Vibr. Acoust.
,
117
, pp.
199
3205
.10.1115/1.2873898
17.
Rosenberg
,
R. M.
,
1966
, “
On Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
Adv. Appl. Mech.
,
9
, pp.
155
-
242
.10.1016/S0065-2156(08)70008-5
18.
Pellicano
,
F.
, and
Vakakis
,
A. F.
,
2001
, “
Normal Modes and Boundary Layers for a Slender Tensioned Beam on a Nonlinear Foundation
,”
Nonlinear Dyn.
,
25
, pp.
79
93
.10.1023/A:1012986128976
19.
Meet Minitab, 2003, Release 14 for Windows, 1st ed. Minitab Inc., State College, PA.
20.
Nayfeh
,
A. H.
,
2000
,
Non-Linear Interactions
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.