Thermal–electrical–chemical–mechanical coupling controls the behavior of many transport and electrochemical reactions processes in physical, chemical and biological systems. Hence, advanced understanding of the coupled behavior is crucial and attracting a large research interest. However, most of the existing coupling theories are limited to the partial coupling or particular process. In this paper, on the basis of irreversible thermodynamics, a variational principle for the thermal electrical chemical mechanical fully coupling problems is proposed. The complete fully coupling governing equations, including the heat conduction, mass diffusion, electrochemical reactions and electrostatic potential, are derived from the variational principle. Here, the piezoelectricity, conductivity, and electrochemical reactions are taken into account. Both the constitutive relations and evolving equations are fully coupled. This theory can be used to deal with coupling problems in solids, including conductors, semiconductors, piezoelectric and nonpiezoelectric dielectrics. As an application of this work, a developed boundary value problem is solved numerically in a mixed ion-electronic conductor (MIEC). Numerical results show that the coupling between electric field, diffusion, and chemical reactions influence the defect distribution, electrostatic potential and mechanical stress.

References

1.
Demirel
,
Y.
,
2008
, “
Modeling of Thermodynamically Coupled Reaction-Transport Systems
,”
Chem. Eng. J.
,
139
(
1
), pp.
106
117
.10.1016/j.cej.2007.07.079
2.
Demirel
,
Y.
,
2009
, “
Thermodynamically Coupled Heat and Mass Flows in a Reaction-Transport System With External Resistances
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
2018
2025
.10.1016/j.ijheatmasstransfer.2008.10.030
3.
Rambert
,
G.
,
Grandidier
,
J.-C.
, and
Aifantis
,
E. C.
,
2007
, “
On the Direct Interactions Between Heat Transfer, Mass Transport and Chemical Processes Within Gradient Elasticity
,”
Eur. J. Mech.—A/Solids
,
26
(
1
), pp.
68
87
.10.1016/j.euromechsol.2005.12.002
4.
Suo
,
Y.
, and
Shen
,
S.
,
2013
, “
General Approach on Chemistry and Stress Coupling Effects During Oxidation
,”
J. Appl. Phys.
,
114
(
16
), p.
164905
.10.1063/1.4826530
5.
Dong
,
X.
,
Feng
,
X.
, and
Hwang
,
K.-C.
,
2012
, “
Oxidation Stress Evolution and Relaxation of Oxide Film/Metal Substrate System
,”
J. Appl. Phys.
,
112
(
2
), p.
023502
.10.1063/1.4736934
6.
Dong
,
X.
,
Fang
,
X.
,
Feng
,
X.
, and
Hwang
,
K. C.
,
2013
, “
Diffusion and Stress Coupling Effect During Oxidation at High Temperature
,”
J. Am. Ceram. Soc.
,
96
(
1
), pp.
44
46
.10.1111/jace.12105
7.
Tuller
,
H. L.
, and
Bishop
,
S. R.
,
2011
, “
Point Defects in Oxides: Tailoring Materials Through Defect Engineering
,”
Annu. Rev. Mater. Res.
,
41
(
1
), pp.
369
398
.10.1146/annurev-matsci-062910-100442
8.
Kalinin
,
S. V.
, and
Spaldin
,
N. A.
,
2013
, “
Materials Science. Functional Ion Defects in Transition Metal Oxides
,”
Science
,
341
(
6148
), pp.
858
859
.10.1126/science.1243098
9.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids. I. Theory
,”
Philos. Mag.
,
87
(
11
), pp.
1705
1721
.10.1080/14786430601102973
10.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids. Part II. Examples
,”
Philos. Mag.
,
87
(
11
), pp.
1723
1742
.10.1080/14786430601102981
11.
Jesse
,
S.
,
Balke
,
N.
,
Eliseev
,
E.
,
Tselev
,
A.
,
Dudney
,
N. J.
,
Morozovska
,
A. N.
, and
Kalinin
,
S. V.
,
2011
, “
Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study
,”
ACS Nano
,
5
(
12
), pp.
9682
9695
.10.1021/nn203141g
12.
Jesse
,
S.
,
Kumar
,
A.
,
Arruda
,
T. M.
,
Kim
,
Y.
,
Kalinin
,
S. V.
, and
Ciucci
,
F.
,
2012
, “
Electrochemical Strain Microscopy: Probing Ionic and Electrochemical Phenomena in Solids at the Nanometer Level
,”
MRS Bull.
,
37
(
7
), pp.
651
658
.10.1557/mrs.2012.144
13.
Kumar
,
A.
,
Jesse
,
S.
,
Morozovska
,
A. N.
,
Eliseev
,
E.
,
Tebano
,
A.
,
Yang
,
N.
, and
Kalinin
,
S. V.
,
2013
, “
Variable Temperature Electrochemical Strain Microscopy of Sm-Doped Ceria
,”
Nanotechnology
,
24
(
14
), p.
145401
.10.1088/0957-4484/24/14/145401
14.
Nowacki
,
W.
,
1974
, “Dynamic Problems of Thermodiffusion in Elastic Solids,”
Proc. Vib. Problems
,
15
(
2
), pp.
105
128
.
15.
Kuang
,
Z.-B.
,
2007
, “
Some Problems in Electrostrictive and Magnetostrictive Materials
,”
Acta Mech. Solida Sin.
,
20
(
3
), pp.
219
227
.10.1007/s10338-007-0726-9
16.
Kuang
,
Z.-B.
,
2007
, “
Some Variational Principles in Elastic Dielectric and Elastic Magnetic Materials
,”
Eur. J. Mech.—A/Solids
,
27
(
3
), pp.
504
514
.10.1016/j.euromechsol.2007.10.001
17.
Kuang
,
Z.-B.
,
2008
, “
Variational Principles for Generalized Dynamical Theory of Thermopiezoelectricity
,”
Acta Mech.
,
203
(
1–2
), pp.
1
11
.10.1007/s00707-008-0039-1
18.
Fischer
,
F.
,
Svoboda
,
J.
, and
Petryk
,
H.
,
2014
, “
Thermodynamic Extremal Principles for Irreversible Processes in Materials Science
,”
Acta Mater.
,
67
, pp.
1
20
.10.1016/j.actamat.2013.11.050
19.
Hu
,
S.
, and
Shen
,
S.
,
2013
, “
Non-Equilibrium Thermodynamics and Variational Principles for Fully Coupled Thermal–Mechanical–Chemical Processes
,”
Acta Mech.
,
224
(
12
), pp.
2895
2910
.10.1007/s00707-013-0907-1
20.
De Groot
,
S. R.
, and
Mazur
,
P.
,
2013
,
Non-Equilibrium Thermodynamics
,
Courier Dover Publications
, New York.
21.
Prigogine
,
I.
, and
Kondepudi
,
D.
,
1999
, “
Thermodynamique
,” Editions Odile Jacob, Paris, France.
22.
Kuang
,
Z.-B.
,
1993
,
Nonlinear Continuum Mechanics
,
Xi'an Jiaotong University Press
,
Xi'an, China
.
23.
Liu
,
M.
, and
Winnick
,
J.
,
1999
, “
Fundamental Issues in Modeling of Mixed Ionic-Electronic Conductors (MIECs)
,”
Solid State Ionics
,
118
(
1
), pp.
11
21
.10.1016/S0167-2738(98)00451-2
24.
Gigliotti
,
M.
, and
Grandidier
,
J.-C.
,
2010
, “
Chemo-Mechanics Couplings in Polymer Matrix Materials Exposed to Thermo-Oxidative Environments
,”
Comptes Rendus Mécanique
,
338
(
3
), pp.
164
175
.10.1016/j.crme.2010.02.008
25.
Chen
,
Z.
,
2004
, “
Comparison of the Mobile Charge Distribution Models in Mixed Ionic-Electronic Conductors
,”
J. Electrochem. Soc.
,
151
(
10
), p.
A1576
.10.1149/1.1789154
26.
Atkinson
,
A.
,
1997
, “
Chemically-Induced Stresses in Gadolinium-Doped Ceria Solid Oxide Fuel Cell Electrolytes
,”
Solid State Ionics
,
95
(
3–4
), pp.
249
258
.10.1016/S0167-2738(96)00588-7
27.
Hayashi
,
H.
,
Kanoh
,
M.
,
Quan
,
C. J.
,
Inaba
,
H.
,
Wang
,
S.
,
Dokiya
,
M.
, and
Tagawa
,
H.
,
2000
, “
Thermal Expansion of Gd-Doped Ceria and Reduced Ceria
,”
Solid State Ionics
,
132
(
3
), pp.
227
233
.10.1016/S0167-2738(00)00646-9
28.
Zhou
,
H.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2010
, “
Finite Element Analysis of Oxidation Induced Metal Depletion at Oxide–Metal Interface
,”
Comput. Mater. Sci.
,
48
(
4
), pp.
842
847
.10.1016/j.commatsci.2010.03.044
29.
Atkinson
,
A.
, and
Ramos
,
T.
,
2000
, “
Chemically-Induced Stresses in Ceramic Oxygen Ion-Conducting Membranes
,”
Solid State Ionics
,
129
(
1
), pp.
259
269
.10.1016/S0167-2738(99)00331-8
You do not currently have access to this content.