In the present work, the problem of an infinite elastic perfectly plastic plate under axisymmetrical loading conditions resting on a bilateral Pasternak elastic foundation is considered. The plate is assumed thin, thus making it possible to neglect the shear deformation according to the classical Kirchhoff theory. Yielding is governed by the Johansen's yield criterion with associative flow rule. A uniformly distributed load is applied on a circular area on the top of the plate. As the load is increased, a circular elastic-plastic region spreads out starting from the center of the loaded area, whereas the outer unbounded region behaves elastically. Depending on the size of the loaded area, a further increase of the load may originate two or three different elastic-plastic regions, corresponding to different yield loci. A closed form solution of the governing equations for each region is found for a special value of the ratio between Pasternak soil moduli. The performed analysis allows us to estimate the elastic-plastic behavior of the plate up to the onset of collapse, here defined by the formation of a plastic mechanism within the plate. The corresponding collapse load and the sizes of the elastic-plastic regions are thus found by imposing the boundary and continuity conditions between the different regions. The influence of the soil moduli, plate bending stiffness, and size of the loaded area on the ultimate bearing capacity of the plate is then investigated in detail.

References

1.
Baumann
,
R.
, and
Weisgerber
,
F.
,
1983
, “
Yield-Line Analysis of Slabs-on-Grade
,”
J. Struct. Eng.
,
109
(
7
), pp.
1553
1568
.10.1061/(ASCE)0733-9445(1983)109:7(1553)
2.
Meyerhof
,
G. G.
,
1962
, “
Load-Carrying Capacity of Concrete Pavements
,”
J. Soil Mech. Found. Div.
,
88
(
SM3
), pp.
89
116
.
3.
Meyerhof
,
G. G.
,
1960
, “
Bearing Capacity of Floating Ice Sheets
,”
J. Eng. Mech. Div.
,
86
(
EM3
), pp.
113
145
.
4.
Lanzoni
,
L.
, and
Radi
,
E.
,
2009
, “
Thermally Induced Deformations in a Partially Coated Elastic Layer
,”
Int. J. Solids Struct.
,
46
(
6
), pp.
1402
1412
.10.1016/j.ijsolstr.2008.11.004
5.
Gazetas
,
G. C.
, and
Tassios
,
T. P.
,
1978
, “
Elastic-Plastic Slabs on Elastic Foundation
,”
J. Struct. Div.
,
104
(
4
), pp.
621
636
.
6.
Gazetas
,
G.
,
1981
, “
Ultimate Behavior of Continuous Footings in Tensionless Contact With a Three-Parameter Soil
,”
J. Struct. Mech.
,
9
(
3
), pp.
339
362
.10.1080/03601218108907391
7.
Selvadurai
,
A. P. S.
,
1979
,
Elastic Analysis of Soil-Foundation Interaction
,
Elsevier Scientific
,
New York
.
8.
Liew
,
K. M.
,
He
,
X. Q.
, and
Kitipornchai
,
S.
,
2006
, “
Predicting Nanovibration of Multi-Layered Graphene Sheets Embedded in an Elastic Matrix
,”
Acta Mater.
,
54
, pp.
4229
4236
.10.1016/j.actamat.2006.05.016
9.
Pradhan
,
S. C.
, and
Kumar
,
A.
,
2010
, “
Vibration Analysis of Orthotropic Graphene Sheets Embedded in Pasternak Elastic Medium Using Nonlocal Elasticity Theory and Differential Quadrature Method
,”
Comput. Mater. Sci.
,
50
, pp.
239
245
.10.1016/j.commatsci.2010.08.009
10.
Han
,
Q.
, and
Lu
,
G.
,
2003
, “
Torsional Buckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Medium
,”
Eur. J. Mech. A Solids
,
22
, pp.
875
883
.10.1016/j.euromechsol.2003.07.001
11.
Ru
,
C. Q.
,
2001
, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
,
49
, pp.
1265
1279
.10.1016/S0022-5096(00)00079-X
12.
Nobili
,
A.
,
2012
, “
Variational Approach to Beams Resting on Two-Parameter Tensionless Elastic Foundations
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021010
.10.1115/1.4005549
13.
Nobili
,
A.
,
2013
, “
Superposition Principle for the Tensionless Contact of a Beam Resting on a Winkler or a Pasternak Foundation
,”
ASCE J. Eng. Mech
,
139
(10), pp. 1470-1478.10.1061/(ASCE)EM.1943-7889.0000555
14.
Johansen
,
K. W.
,
1962
,
Yield Line Theory
,
Cement and Concrete Association
, London.
15.
Save
,
M. A.
,
Massonnet
,
C. E.
, and
De Saxce
,
G.
,
1997
,
Plastic Limit Analysis of Plates, Shells, and Disks
,
Elsevier
,
New York
.
16.
Baltov
,
A.
, and
Minchev
,
O.
,
1993
, “
Dynamic Carrying Capacity of Thin Inelastic Circular Plates With Respect to Strength and Deformability
,”
Int. J. Plasticity
,
9
(
8
), pp.
979
987
.10.1016/0749-6419(93)90062-U
17.
Chen
,
W. F.
, and
Han
,
D. J.
,
1988
,
Plasticity for Structural Engineers
,
Springer
,
New York
.
18.
Sokól-Supel
,
J.
,
1985
, “
Elastoplastic Bending of Plates Resting on Elastic Subgrade Under Rotational Symmetry Conditions
,”
J. Struct. Mech.
,
13
(
3–4
), pp.
323
341
.10.1080/03601218508907504
19.
Sokól-Supel
,
J.
,
1988
, “
Bending of Metallic Circular Plates Resting on Elastic Subgrade
,”
Ingenieur Archiv
,
58
(3), pp.
185
192
.10.1007/BF00534329
20.
Tekinalp
,
B.
,
1957
, “
Elastic-Plastic Bending of a Built-In Circular Plate Under a Uniformly Distributed Load
,”
J. Mech. Phys. Solids
,
5
(
2
), pp.
135
142
.10.1016/0022-5096(57)90057-1
21.
Kocatürk
,
T.
,
1997
, “
Elastoplastic Analysis of Circular Plates on Elastoplastic Foundation
,”
J. Struct. Eng.
,
123
(
6
), pp.
808
815
.10.1061/(ASCE)0733-9445(1997)123:6(808)
22.
Radi
,
E.
, and
Di Maida
,
P.
,
2013
, “
Load-Carrying Capacity of Large FRC Slab on Grade
,”
Eng. Struct.
(submitted).
23.
Lubliner
,
J.
,
2008
,
Plasticity Theory
,
Dover Publication, New York
.
24.
Polyanin.
,
A. D.
, and
Zaitsev
,
V. F.
,
1995
,
Handbook of Exact Solutions for Ordinary Differential Equations
,
CRC
,
Boca Raton, FL
.
25.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1972
, “
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
,” Dover, New York.
26.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
27.
Nobili
,
A.
,
Radi
,
E.
, and
Lanzoni
,
L.
,
2013
, “
The Bending Stress in a Cracked Kirchhoff Plate Resting on a Pasternak Foundation,
” Eur. J. Ceramics (submitted).
You do not currently have access to this content.