Issues related to the construction of continuum theories of strain gradient plasticity which have emerged in recent years are reviewed and brought to bear on the formulation of the most basic theories. Elastic loading gaps which can arise at initial yield or under imposition of nonproportional incremental boundary conditions are documented and analytical methods for dealing with them are illustrated. The distinction between unrecoverable (dissipative) and recoverable (energetic) stress quantities is highlighted with respect to elastic loading gaps, and guidelines for eliminating the gaps are presented. An attractive gap-free formulation that generalizes the classical flow theory is identified and illustrated.
Issue Section:
Research Papers
References
1.
Fleck
, N. A.
, Hutchinson
, J. W.
, and Willis
, J. R.
, 2014
, “Strain Gradient Plasticity Under Non-Proportional Loading
,” Proc. R. Soc., A
, 470
(2170), p. 20140267
.10.1098/rspa.2014.02672.
Bardella
, L.
, and Panteghini
, A.
, 2015
, “Modelling the Torsion of Thin Metal Wires by Distortion Gradient Plasticity
,” J. Mech. Phys. Solids
, 78
, pp. 467
–492
.10.1016/j.jmps.2015.03.0033.
Gurtin
, M. E.
, 2003
, “On a Framework for Small-Deformation Viscoplasticity: Free Energy, Microforces, Strain Gradients
,” Int. J. Plast.
, 19
(1), pp. 47
–90
.10.1016/S0749-6419(01)00018-34.
Gudmundson
, P. A.
, 2004
, “A Unified Treatment of Strain Gradient Plasticity
,” J. Mech. Phys. Solids
, 52
(6), pp. 1379
–1406
.10.1016/j.jmps.2003.11.0025.
Gurtin
, M. E.
, and Anand
, L.
, 2005
, “A Theory of Strain-Gradient Plasticity for Isotropic, Plastically Irrotational Materials. Part I: Small Deformations
,” J. Mech. Phys. Solids
, 53
(7), pp. 1624
–1649
.10.1016/j.jmps.2004.12.0086.
Fleck
, N. A.
, and Hutchinson
, J. W.
, 1997
, “Strain Gradient Plasticity
,” Adv. Appl. Mech.
, 33
, pp. 295
–361
.10.1016/S0065-2156(08)70388-07.
Muhlhaus
, H. B.
, and Aifantis
, E. C.
, 1991
, “A Variational Principle for Gradient Plasticity
,” Int. J. Solids Struct.
, 28
(7
), pp. 845
–857
.10.1016/0020-7683(91)90004-Y8.
Fleck
, N. A.
, and Willis
, J. R.
, 2009
,“A Mathematical Basis for Strain Gradient Plasticity Theory. Part I: Scalar Plastic Multiplier. Part II: Tensorial Plastic Multiplier
,” J. Mech. Phys. Solids
, 57
(1
), pp. 161
–177
.10.1016/j.jmps.2008.09.0109.
Hutchinson
, J. W.
, 2012
, “Generalizing J2 Flow Theory: Fundamental Issues in Strain gradient Plasticity
,” Acta Mech. Sin.
, 28
(4
), pp. 1078
–1086
.10.1007/s10409-012-0089-410.
Forest
, S.
, and Sievert
, R.
, 2003
, “Elastoviscoplastic Constitutive Frameworks for Generalized Continua
,” Acta Mech.
, 160
(12
), pp. 71
–111
.10.1007/s00707-002-0975-011.
Danas
, K.
, Deshpande
, V. S.
, and Fleck
, N. A.
, 2010
, “Compliant Interfaces: A Mechanism for Relaxation of Dislocation Pile-Ups in a Sheared Single Crystal
,” Int. J. Plast.
, 26
(12
), pp. 1792
–1805
.10.1016/j.ijplas.2010.03.00812.
Fleck
, N. A.
, Muller
, G. M.
, Ashby
, M. F.
, and Hutchinson
, J. W.
, 1994
, “Strain Gradient Plasticity: Theory and Experiment
,” Acta Metall. Mater.
, 42
(2
), pp. 475
–487
.10.1016/0956-7151(94)90502-913.
Nix
, W. D.
, and Gao
, H.
, 1998
, “Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,” J. Mech. Phys. Solids
, 46
(3
), pp. 411
–425
.10.1016/S0022-5096(97)00086-014.
Niordson
, C. N.
, and Legarth
, B. N.
, 2010
, “Strain Gradient Effects in Cyclic Plasticity
,” J. Mech. Phys. Solids
, 58
(4), pp. 542
–557
.10.1016/j.jmps.2010.01.00715.
Bittencourt
, E.
, Needleman
, A.
, Gurtin
, M. E.
, and Van der Giessen
, E.
, 2003
, “A Comparison of Nonlocal Continuum and Discrete Dislocation Plasticity Predictions
,” J. Mech. Phys. Solids
, 51
(2
), pp. 281
–310
.10.1016/S0022-5096(02)00081-916.
Ohno
, N.
, and Okumura
, D.
, 2007
, “Higher-Order Stress and Grain Size Effects Due to Self-Energy of Geometrically Necessary Dislocations
,” J. Mech. Phys. Solids
, 55
(9
), pp. 1879
–1898
.10.1016/j.jmps.2007.02.00717.
Evans
, A. G.
, and Hutchinson
, J. W.
, 2009
, “A Critical Assessment of Theories of Strain Gradient Plasticity
,” Acta Mater.
, 57
(5
), pp. 1675
–1688
.10.1016/j.actamat.2008.12.012Copyright © 2015 by ASME
You do not currently have access to this content.