Nonlinear dynamics and mode aberration of rotating plates and shells are discussed in this work. The mathematical formalism is based on the one-dimensional (1D) Carrera unified formulation (CUF), which enables to express the governing equations and related finite element arrays as independent of the theory approximation order. As a consequence, three-dimensional (3D) solutions accounting for couplings due to geometry, material, and inertia can be included with ease and with low computational costs. Geometric nonlinearities are incorporated in a total Lagrangian scenario and the full Green-Lagrange strains are employed to outline accurately the equilibrium path of structures subjected to inertia, centrifugal forces, and Coriolis effect. A number of representative numerical examples are discussed, including multisection blades and shells with different radii of curvature. Particular attention is focused on the capabilities of the present formulation to deal with nonlinear effects, and comparison with s simpler linearized approach shows evident differences, particularly in the case of deep shells.

References

1.
Rao
,
J.
,
1973
, “
Natural Frequencies of Turbine Blading—A Survey
,”
Shock Vib. Dig.
,
5
(
10
), pp.
3
16
.
2.
Carniege
,
W.
,
1964
, “
Vibration of Pre-twisted Cantilever Blading Allowing for Rotary Inertia and Shear Deflection
,”
Int. J. Eng. Sci.
,
6
(
2
), pp.
105
109
.
3.
Putter
,
S.
, and
Manor
,
H.
,
1978
, “
Natural Frequencies of Radial Rotating Beams
,”
J. Sound Vib.
,
56
(
2
), pp.
175
185
.
4.
Ansari
,
K. A.
,
1986
, “
On the Importance of Shear Deformation, Rotatory Inertia, and Coriolis Forces in Turbine Blade Vibrations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
319
324
.
5.
Chandra
,
R.
, and
Chopra
,
I.
,
1992
, “
Experimental-Theoretical Investigation of the Vibration Characteristics of Rotating Composite Box Beams
,”
J. Aircr.
,
29
(
4
), pp.
657
664
.
6.
Jung
,
S. N.
,
Nagaraj
,
V. T.
, and
Chopra
,
I.
,
2001
, “
Refined Structural Dynamics Model for Composite Rotor Blades
,”
AIAA J.
,
39
(
2
), pp.
339
348
.
7.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
8.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
,
1997
, “
Vabs: A New Concept for Composite Rotor Blade Cross-Sectional Modeling
,”
J. Am. Helicopter Soc.
,
42
(
1
), pp.
27
38
.
9.
Leissa
,
A. W.
,
1980
, “
Vibrations of Turbine Engine Blades by Shell Analysis
,”
Shock Vib. Dig.
,
12
(
11
), pp.
3
10
.
10.
Leissa
,
A. W.
,
Lee
,
J. K.
, and
Wang
,
A. J.
,
1982
, “
Rotating Blade Vibration Analysis Using Shells
,”
ASME J. Eng. Power
,
104
(
2
), pp.
296
302
.
11.
Hu
,
X. X.
,
Sakiyama
,
T.
,
Matsuda
,
H.
, and
Morita
,
C.
,
2004
, “
Fundamental Vibration of Rotating Cantilever Blades With Pre-Twist
,”
J. Sound Vib.
,
271
(
1–2
), pp.
47
66
.
12.
Kee
,
Y.-J.
, and
Kim
,
J.-H.
,
2004
, “
Vibration Characteristics of Initially Twisted Rotating Shell Type Composite Blades
,”
Compos. Struct.
,
64
(
2
), pp.
151
159
.
13.
Kang
,
H.
,
Chang
,
C.
,
Saberi
,
H.
, and
Ormiston
,
R.
,
2014
, “
Assessment of Beam and Shell Elements for Modeling Rotorcraft Blades
,”
J. Aircr.
,
51
(
2
), pp.
520
531
.
14.
Sze
,
K. Y.
,
Liu
,
X. H.
, and
Lo
,
S. H.
,
2004
, “
Popular Benchmark Problems for Geometric Nonlinear Analysis of Shells
,”
Finite Elem. Anal. Des.
,
40
(
11
), pp.
1551
1569
.
15.
Kee
,
Y.-J.
, and
Shin
,
S.-J.
,
2015
, “
Structural Dynamic Modeling for Rotating Blades Using Three Dimensional Finite Elements
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1607
1618
.
16.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Nikishkov
,
Y. G.
,
2001
, “
Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures
,”
Math. Comput. Model.
,
33
(
10–11
), pp.
1113
1137
.
17.
Bauchau
,
O. A.
, and
Chiang
,
W.
,
1994
, “
Dynamic Analysis of Bearingless Tail Rotor Blades Based on Nonlinear Shell Models
,”
J. Aircr.
,
31
(
6
), pp.
1402
1410
.
18.
Bauchau
,
O. A.
,
Choi
,
J.-Y.
, and
Bottasso
,
C. L.
,
2002
, “
On the Modeling of Shells in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
8
(
4
), pp.
459
489
.
19.
Yu
,
W.
,
Hodges
,
D. H.
, and
Volovoi
,
V. V.
,
2002
, “
Asymptotic Generalization of Reissner Mindlin Theory: Accurate Three-Dimensional Recovery for Composite Shells
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
44
), pp.
5087
5109
.
20.
Hodges
,
D. H.
,
Atilgan
,
A. R.
, and
Danielson
,
D. A.
,
1993
, “
A Geometrically Nonlinear Theory of Elastic Plates
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
109
116
.
21.
Hodges
,
D. H.
,
Yu
,
W.
, and
Patil
,
M. J.
,
2009
, “
Geometrically-Exact, Intrinsic Theory for Dynamics of Moving Composite Plates
,”
Int. J. Solids Struct.
,
46
(
10
), pp.
2036
2042
.
22.
Carrera
,
E.
,
Filippi
,
M.
, and
Zappino
,
E.
,
2013
, “
Laminated Beam Analysis by Polynomial, Trigonometric, Exponential and Zig-Zag Theories
,”
Eur. J. Mech. A/Solids
,
41
, pp.
58
69
.
23.
Pagani
,
A.
,
de Miguel
,
A.
,
Petrolo
,
M.
, and
Carrera
,
E.
,
2016
, “
Analysis of Laminated Beams Via Unified Formulation and Legendre Polynomial Expansions
,”
Compos. Struct.
,
156
, pp.
78
92
.
24.
Kaleel
,
I.
,
Petrolo
,
M.
,
Carrera
,
E.
, and
Waas
,
A. M.
,
2017
, “
Micromechanical Progressive Failure Analysis of Fiber-Reinforced Composite Using Refined Beam Models
,”
ASME J. Appl. Mech.
,
85
(
2
), p.
021004
.
25.
Carrera
,
E.
,
Pagani
,
A.
, and
Petrolo
,
M.
,
2013
, “
Classical, Refined and Component-Wise Theories for Static Analysis of Reinforced-Shell Wing Structures
,”
AIAA J.
,
51
(
5
), pp.
1255
1268
.
26.
Carrera
,
E.
, and
Pagani
,
A.
,
2016
, “
Accurate Response of Wing Structures to Free Vibration, Load Factors and Non-Structural Masses
,”
AIAA J.
,
54
(
1
), pp.
227
241
.
27.
Filippi
,
M.
, and
Carrera
,
E.
,
2016
, “
Capabilities of 1D CUF-Based Models to Analyse Metallic/Composite Rotors
,”
Adv. Aircr. Spacecr. Sci.
,
3
(
1
), pp.
1
14
.
28.
Carrera
,
E.
, and
Filippi
,
M.
,
2016
, “
A Refined One-Dimensional Rotordynamics Model With Three-Dimensional Capabilities
,”
J. Sound Vib.
,
366
, pp.
343
356
.
29.
Pagani
,
A.
, and
Carrera
,
E.
,
2018
, “
Unified Formulation of Geometrically Nonlinear Refined Beam Theories
,”
Mech. Adv. Mater. Struct.
,
25
(
1
), pp.
15
31
.
30.
Pagani
,
A.
, and
Carrera
,
E.
,
2017
, “
Large-Deflection and Post-Buckling Analyses of Laminated Composite Beams by Carrera Unified Formulation
,”
Compos. Struct.
,
170
, pp.
40
52
.
31.
Carrera
,
E.
,
Cinefra
,
M.
,
Petrolo
,
M.
, and
Zappino
,
E.
,
2014
,
Finite Element Analysis of Structures Through Unified Formulation
,
Wiley
,
Chichester, UK
.
32.
Carrera
,
E.
,
Filippi
,
M.
, and
Zappino
,
F.
,
2013
, “
Free Vibration Analysis of Rotating Composite Blades Via Carrera Unified Formulation
,”
Compos. Struct.
,
106
, pp.
317
325
.
33.
Carrera
,
E.
, and
Filippi
,
M.
,
2014
, “
Variable Kinematic One-Dimensional Finite Elements for the Analysis of Rotors Made of Composite Materials
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092501
.
34.
Entezari
,
A.
,
Filippi
,
M.
, and
Carrera
,
E.
,
2017
, “
On Dynamic Analysis of Variable Thickness Disks and Complex Rotors Subjected to Thermal and Mechanical Prestresses
,”
J. Sound Vib.
,
405
, pp.
68
85
.
You do not currently have access to this content.