A necessary and sufficient condition in terms of explicit algebraic inequalities on its five on-axis material constants and a similarly formulated sufficient condition on its entire set of nine material constants are given for the first time to guarantee a calibrated Gotoh's fourth-order yield function to be convex. When considering the Gotoh's yield function to model a sheet metal with planar isotropy, a single algebraic inequality has also been obtained on the admissible upper and lower bound values of the ratio of uniaxial tensile yield stress over equal-biaxial tensile yield stress at a given plastic thinning ratio. The convexity domain of yield stress ratio and plastic thinning ratio defined by these two bounds may be used to quickly assess the applicability of Gotoh's yield function for a particular sheet metal. The algebraic convexity conditions presented in this study for Gotoh's nonquadratic yield function complement the convexity certification based on a fully numerical minimization algorithm and should facilitate its wider acceptance in modeling sheet metal anisotropic plasticity.

References

1.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
2.
Hill
,
R.
,
1990
, “
Constitutive Modeling of Orthotropic Plasticity in Sheet Metals
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
403
417
.
3.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London
,
A193
(
1033
), pp.
281
297
.
4.
Bourne
,
L.
, and
Hill
,
R.
,
1950
, “
On the Correlation of the Directional Properties of Rolled Sheets in Tension and Cupping Tests
,”
Philos. Mag.
,
41
(
318
), pp.
49
53
.
5.
Pearce
,
R.
,
1968
, “
Some Aspects of Anisotropic Plasticity in Sheet Metals
,”
Int. J. Mech. Sci.
,
10
(
12
), pp.
995
1004
.
6.
Gotoh
,
M.
,
1977
, “
A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State) I & II
,”
Int. J. Mech. Sci.
,
19
(
9
), pp.
505
520
.
7.
Hill
,
R.
,
1979
, “
Theoretical Plasticity of Textured Aggregates
,”
Math. Proc. Cambridge Philos. Soc.
,
85
(
01
), pp.
179
191
.
8.
Tamura
,
S.
,
Sumikawa
,
S.
,
Hamasaki
,
H.
,
Uemori
,
T.
, and
Yoshida
,
F.
,
2010
, “
Elasto-Plasticity Behavior of Type 5000 and 6000 Aluminum Alloy Sheets and Its Constitutive Modeling
,”
AIP Conf. Proc.
,
1252
, p.
630
.
9.
Kuwabaraa
,
T.
,
Hashimoto
,
K.
,
Iizuka
,
E.
, and
Yoon
,
J. W.
,
2011
, “
Effect of Anisotropic Yield Functions on the Accuracy of Hole Expansion Simulations
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
475
481
.
10.
Kitayama
,
K.
,
Kobayashi
,
T.
,
Uemori
,
T.
, and
Yoshida
,
F.
,
2012
, “
Elasto-Plasticity Behavior of IF Steel Sheet With Planar Anisotropy and Its Macro-Meso Modeling
,”
ISIJ Int.
,
52
(
4
), pp.
735
742
.
11.
Tong
,
W.
,
2016
, “
Application of Gotoh's Orthotropic Yield Function for Modeling Advanced High-Strength Steel Sheets
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
094502
.
12.
Gotoh
,
M.
,
Iwata
,
N.
, and
Matsui
,
M.
,
1995
, “
Finite-Element Simulation of Deformation and Breakage in Sheet Metal Forming
,”
JSME Int. J. Ser. A
,
38
(
2
), pp.
281
288
.
13.
Hu
,
W.
,
2007
, “
Constitutive Modeling of Orthotropic Sheet Metals by Presenting Hardening-Induced Anisotropy
,”
Int. J. Plast.
,
23
(
4
), pp.
620
639
.
14.
Soare
,
S.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
,
2008
, “
On the Use of Homogeneous Polynomials to Develop Anisotropic Yield Functions With Applications to Sheet Forming
,”
Int. J. Plast.
,
24
(
6
), pp.
915
944
.
15.
Tong
,
W.
, and
Alharbi
,
M.
,
2017
, “
Comparative Evaluation of Non-Associated Quadratic and Associated Quartic Plasticity Models for Orthotropic Sheet Metals
,”
Int. J. Solids Struct.
,
128
, pp.
133
148
.
16.
Hershey
,
A.
,
1954
, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face Centred Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(9), pp.
241
249
.
17.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
3
), pp.
236
249
.
18.
Drucker
,
D. C.
,
1959
, “
A Definition of Stable Inelastic Material
,”
ASME J. Appl. Mech.
,
26
(3), pp.
101
106
.
19.
Yang
,
W.
,
1980
, “
A Useful Theorem for Constructing Convex Yield Function
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
301
303
.
20.
Hosford
,
W. F.
,
1985
, “
Comments on Anisotropic Yield Criteria
,”
Int. J. Mech. Sci.
,
27
(
7–8
), pp.
423
427
.
21.
Lubliner
,
J.
,
1990
,
Plasticity Theory
,
Macmillan
,
New York
.
22.
Maugin
,
G. A.
,
1992
,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge, UK
.
23.
Barlat
,
F.
,
Yoon
,
J. W.
, and
Cazacu
,
O.
,
2007
, “
On Linear Transformations of Stress Tensors for the Description of Plastic Anisotropy
,”
Int. J. Plast.
,
23
(
5
), pp.
876
896
.
24.
Yoshida
,
F.
,
Hamasaki
,
H.
, and
Uemori
,
T.
,
2013
, “
A User-Friendly 3D Yield Function to Describe Anisotropy of Steel Sheets
,”
Int. J. Plasticity
,
45
, pp.
119
139
.
25.
Tong
,
W.
,
2016
, “
Generalized Fourth-Order Hill's 1979 Yield Function for Modeling Sheet Metals in Plane Stress
,”
Acta Mech.
,
227
(
10
), pp.
2719
2733
.
26.
Tong
,
W.
,
2016
, “
On the Parameter Identification of Polynomial Anisotropic Yield Functions
,”
ASME J. Manuf. Sci. Eng.
,
138
(
7
), p.
071002
.
27.
Tong
,
W.
,
2018
, “
An Improved Method of Determining Gotoh's Nine Material Constants for a Sheet Metal With Only Seven or Less Experimental Inputs
,”
Int. J. Mech. Sci
,
140
, pp.
394
406
.
28.
Budianski
,
B.
,
1984
, “
Anisotropic Plasticity of Plane Isotropic Sheets
,”
Mechanics of Material Behaviour
(Studies in Applied Mechanics, Vol. 6), Elsevier, Amsterdam, The Netherlands, pp.
15
29
.
29.
Rodin
,
G. J.
, and
Parks
,
D. M.
,
1986
, “
On Consistency Relations in Nonlinear Fracture Mechanics
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
834
838
.
30.
Bigoni
,
D.
, and
Piccolroaz
,
A.
,
2004
, “
Yield Criteria for Quasibrittle and Frictional Materials
,”
Int. J. Solids Struct.
,
41
(
11–12
), pp.
2855
2878
.
31.
Helton
,
J. W.
, and
Nie
,
J.
,
2010
, “
Semidefinite Representation of Convex Sets
,”
Math. Program.
,
122
(
1
), pp.
21
64
.
32.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press, Cambridge
,
UK
.
33.
Ahmadi
,
A.
, and
Parrilo
,
P.
,
2013
, “
A Complete Characterization of the Gap Between Convexity and SOS-Convexity
,”
SIAM J. Optim.
,
23
(
2
), pp.
811
833
.
34.
Powers
,
V.
, and
Wormann
,
T.
,
1998
, “
An Algorithm for Sums of Squares of Real Polynomials
,”
J. Pure Appl. Algebra
,
127
(
1
), pp.
99
104
.
35.
Jiang
,
B.
,
Li
,
Z.
, and
Zhang
,
S.
,
2017
, “
On Cones of Nonnegative Quartic Forms
,”
Found. Comput. Math.
,
17
(
1
), pp.
161
197
.
36.
Prussing
,
J.
,
1986
, “
The Principal Minor Test for Semidefinite Matrices
,”
J. Guid.
,
9
(
1
), pp.
121
122
.
37.
Hirvensalo
,
M.
,
2005
, “
A Method for Computing the Characteristic Polynomial and Determining Semidefiniteness
,” Turku Center for Computer Science, Turku, Finland, Technical Report No. TUCS TR727.
38.
Nie
,
J.
,
2010
, “
Positive Semidefinite Matrices (Theorem 4)
,” University of California, San Diego, CA, accessed Oct. 18, 2017, http://www.math.ucsd.edu/~njw/Teaching/Math271C/Lecture_03.pdf
39.
Horn
,
R. A.
, and
Johnson
,
C.
,
2012
,
Matrix Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
40.
Lay
,
D. C.
,
2003
,
Linear Algebra and Its Applications
, 3rd ed.,
Addison Wesley
,
Boston, MA
.
41.
Tong
,
W.
,
2018
, “
Calibration of a Complete Homogeneous Polynomial Yield Function of Six Degrees for Modeling Orthotropic Steel Sheets
,”
Acta Mechanica
, epub.
42.
Ahmadi
,
A.
,
Olshevsky
,
A.
,
Parrilo
,
P.
, and
Tsitsiklis
,
J.
,
2013
, “
NP-Hardness of Deciding Convexity of Quartic Polynomials and Related Problems
,”
Math. Program., Ser. A
,
137
(
1–2
), pp.
453
476
.
You do not currently have access to this content.